
(a)
Interpretation:
The minimum number of electrons that would have to be added and the minimum number that would have to be removed to change the electronic configuration of the given element to get a noble gas configuration are to be indicated.
Concept introduction:
Every element wants to attain an electronic configuration same as noble gas configuration, to do so elements either gain electrons or lose electrons. When an atom of an element gains electrons, it forms an anion. When an atom of an element loses electrons, it forms a cation.
(b)
Interpretation:
The minimum number of electrons that would have to be added and the minimum number that would have to be removed to change the electronic configuration of the given element to get a noble gas configuration are to be indicated.
Concept introduction:
Every element wants to attain an electronic configuration same as noble gas configuration, to do so elements either gain electrons or lose electrons. When an atom of an element gains electrons, it forms an anion. When an atom of an element loses electrons, it forms a cation.
(c)
Interpretation:
The minimum number of electrons that would have to be added and the minimum number that would have to be removed to change the electronic configuration of the given element to get a noble gas configuration are to be indicated.
Concept introduction:
Every element wants to attain an electronic configuration same as noble gas configuration, to do so elements either gain electrons or lose electrons. When an atom of an element gains electrons, it forms an anion. When an atom of an element loses electrons, it forms a cation.
(d)
Interpretation:
The minimum number of electrons that would have to be added and the minimum number that would have to be removed to change the electronic configuration of the given element to get a noble gas configuration are to be indicated.
Concept introduction:
Every element wants to attain an electronic configuration same as noble gas configuration, to do so elements either gain electrons or lose electrons. When an atom of an element gains electrons, it forms an anion. When an atom of an element loses electrons, it forms a cation.

Trending nowThis is a popular solution!

Chapter 4 Solutions
Chemistry for Today: General, Organic, and Biochemistry
- Synthesize 2-Ethyl-3-methyloxirane from dimethyl(propyl)sulfonium iodide using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize 2-Hydroxy-2-phenylacetonitrile from phenylmethanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forward
- Synthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardIf possible, please provide the formula of the compound 3,3-dimethylbut-2-enal.arrow_forwardSynthesize 1,4-dibromobenzene from acetanilide (N-phenylacetamide) using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forward
- Indicate the products obtained by mixing (3-oxo-3-phenylpropyl)triphenylphosphonium bromide with sodium hydride.arrow_forwardWe mix N-ethyl-2-hexanamine with excess methyl iodide and followed by heating with aqueous Ag2O. Indicate the major products obtained.arrow_forwardIndicate the products obtained by mixing acetophenone with iodine and NaOH.arrow_forward
- Indicate the products obtained by mixing 2-Propanone and ethyllithium and performing a subsequent acid hydrolysis.arrow_forwardIndicate the products obtained if (E)-2-butenal and 3-oxo-butanenitrile are mixed with sodium ethoxide in ethanol.arrow_forwardQuestion 3 (4 points), Draw a full arrow-pushing mechanism for the following reaction Please draw all structures clearly. Note that this intramolecular cyclization is analogous to the mechanism for halohydrin formation. COH Br + HBr Brarrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHER
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning





