
Principles Of Electric Circuits
10th Edition
ISBN: 9780134879482
Author: Floyd, Thomas L.
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 3P
What is the power when energy is consumed at the rate of 350 J/s?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
I need help in creating a matlab code to find the currents USING MARTIXS AND INVERSE to find the current
Question 2
A transistor is used as a switch and the waveforms are shown in Figure 2. The parameters are
Vcc = 225 V, VBE(sat) = 3 V, IB = 8 A, VCE(sat) = 2 V, Ics = 90 A, td = 0.5 µs, tr = 1 µs, ts = 3 µs, tƒ
= 2 μs, and f
10 kHz. The duty cycle is k 50%. The collector- emitter leakage current is
ICEO = 2 mA. Determine the power loss due to the collector current:
=
=
=
(a) during turn-on ton = td + tr
VCE
Vcc
(b) during conduction period tn
V CE(sat)
0
toff"
ton
Ics
0.9 Ics
(c) during turn-off toff = ts + tf
(d) during off-time tot
(e) the total average power losses PT
ICEO
0
IBS
0
Figure 2
V BE(sat)
0
主
*
td
tr
In
Is
If
to
iB
VBE
T= 1/fs
Question 1:
The beta (B) of the bipolar transistor shown in Figure 1 varies from 12 to 60. The load resistance
is Rc = 5. The dc supply voltage is VCC = 40 V and the input voltage to the base circuit is
VB = 5 V. If VCE(sat) = 1.2 V, VBE(sat) = 1.6 V, and RB = 0.8 2, calculate:
(a) the overdrive factor ODF.
(b) the forced ẞ
(c) the power loss in the transistor PT.
IB
VB
RB
+
V BE
RC
Vcc'
Ic
+
IE
Figure 1
VCE
Chapter 4 Solutions
Principles Of Electric Circuits
Ch. 4 - If 100 W of power occurs for 30 s, how much...Ch. 4 - Express the following amounts of power in watts...Ch. 4 - Prob. 3RPCh. 4 - How many kilowatt-hours are used by a 1/2 hp motor...Ch. 4 - Determine P in each circuit of Figure 4-2 for the...Ch. 4 - A 100 W light bulb operates on 120 V. How much...Ch. 4 - Prob. 7RPCh. 4 - A 0.25 W, 1.0 k resistor is connected across a 12...Ch. 4 - How will the total power delivered change if the...Ch. 4 - A power supply has an efficiency of 92%. If PIN is...
Ch. 4 - A certain battery delivers 10 A for 6 h. What is...Ch. 4 - The kilowatt-hour is a unit of power.Ch. 4 - One watt is equal to one joule per second.Ch. 4 - 0.050 W is the same as 50 mW.Ch. 4 - Prob. 4TFQCh. 4 - The kilowatt and the horsepower are both units of...Ch. 4 - The power rating of a resistor should always be...Ch. 4 - The amount of heat that a resistor can dissipate...Ch. 4 - If the voltage across a resistor doubles, the...Ch. 4 - Watts law states that power equals voltage times...Ch. 4 - If the current through a resistor doubles, the...Ch. 4 - Within limits, a regulated power supply can...Ch. 4 - The efficiency of a power supply can be expressed...Ch. 4 - A power supply that has a negative output voltage...Ch. 4 - A battery Ah rating is a guide to the amount of...Ch. 4 - When analyzing a circuit problem, you should...Ch. 4 - Power can be defined as 1. energy 2. heat 3. the...Ch. 4 - Two hundred joules of energy are consumed in 10 s....Ch. 4 - If it takes 300 ms to use 10,000 J of energy, the...Ch. 4 - In 50 kW, there are 1. 500 W 2. 5,000 W 3. 0.5 MW...Ch. 4 - In 0.045 W, there are 1. 45 kW 2. 45 mW 3. 4,500 W...Ch. 4 - For 10 V and 50 mA, the power is 1. 500 mW 2. 0.5W...Ch. 4 - When the current through a 10 k resistor is 10 mA,...Ch. 4 - A 2.2 k resistor dissipates 0.5 W. The current is...Ch. 4 - A 330 resistor dissipates 2 W. The voltage is 1....Ch. 4 - If you used 500 W of power for 24 h, you have used...Ch. 4 - How many watt-hours represent 75 W used for 10 h?...Ch. 4 - A 100 resistor must carry a maximum current of 35...Ch. 4 - The power rating of a resistor that is to handle...Ch. 4 - A 22 half-watt resistor and a 220 half-watt...Ch. 4 - When the needle of an analog ohmmeter indicates...Ch. 4 - A 12 V battery is connected to a 600 load. Under...Ch. 4 - A given power supply is capable of providing 8 A...Ch. 4 - A power supply produces a 0.5 W output with an...Ch. 4 - If the current through a fixed resistor goes from...Ch. 4 - If the voltage across a fixed resistor goes from...Ch. 4 - A variable resistor has 5 V across it. If you...Ch. 4 - If the voltage across a resistor increases from 5...Ch. 4 - If the resistance of a load connected to a battery...Ch. 4 - If the amount of time that a battery supplies...Ch. 4 - If the current that a battery supplies to a load...Ch. 4 - If there is no load connected to a battery, its...Ch. 4 - If the output voltage of a power supply increases,...Ch. 4 - For a constant power supply output voltage, if the...Ch. 4 - For a constant power supply output voltage, if the...Ch. 4 - If the load is removed leaving the power supply...Ch. 4 - Prove that the unit for power (the watt) is...Ch. 4 - Show that there are 3.6 106 joules in a...Ch. 4 - What is the power when energy is consumed at the...Ch. 4 - How many watts are used when 7,500 J of energy are...Ch. 4 - How many watts does 1,000 J in 50 ms equal?Ch. 4 - Convert the following to kilowatts: 1. 1,000 W 2....Ch. 4 - Convert the following to megawatts: 1. 1,000,000 w...Ch. 4 - Convert the following to milliwatts: 1. 1 W 2. 0.4...Ch. 4 - Convert the following to microwatts: 1. 2 W 2....Ch. 4 - Convert the following to watts: 1. 1.5 kW 2. 0.5...Ch. 4 - Prob. 11PCh. 4 - If a 300 W bulb is allowed to burn continuously...Ch. 4 - At the end of a 31-day period, your utility bill...Ch. 4 - Convert 5 106 watt-minutes to kWh.Ch. 4 - Convert 6,700 watt-seconds to kWh.Ch. 4 - For how many seconds must there be 5 A of current...Ch. 4 - If a 75 V source is supplying 2 A to a load, what...Ch. 4 - If a resistor has 5.5 V across it and 3 mA through...Ch. 4 - An electric heater works on 120 V and draws 3 A of...Ch. 4 - What is the power when there are 500 mA of current...Ch. 4 - Calculate the power dissipated by a 10 k resistor...Ch. 4 - If there are 60 V across a 680 resistor, what is...Ch. 4 - A 56 resistor is connected across the terminals...Ch. 4 - If a resistor is to carry 2 A of current and...Ch. 4 - A 12 V source is connected across a 10 resistor....Ch. 4 - The maximum voltage is 1 V and the maximum current...Ch. 4 - A 6.8 k resistor has burned out in a circuit. You...Ch. 4 - A certain type of power resistor comes in the...Ch. 4 - For each circuit in Figure 414, assign the proper...Ch. 4 - A 50 load uses 1 W of power. What is the output...Ch. 4 - Assume that an alkaline D-cell battery can...Ch. 4 - What is the total energy in joules that is...Ch. 4 - A battery can provide an average of 1.5 A of...Ch. 4 - How much average current can be drawn from an 80...Ch. 4 - If a battery is rated at 650 mAh, how much average...Ch. 4 - If the input power is 500 mW and the output power...Ch. 4 - To operate at 85% efficiency, how much output...Ch. 4 - Prob. 39P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- I need help in creating a matlab code to find the currentsarrow_forwardI need help fixing this MATLAB code: as I try to get it working there were some problems:arrow_forwardI need help in construct a matlab code to find the voltage of VR1 to VR4, the currents, and the watts based on that circuit.arrow_forward
- Q2: Using D flip-flops, design a synchronous counter. The counter counts in the sequence 1,3,5,7, 1,7,5,3,1,3,5,7,.... when its enable input x is equal to 1; otherwise, the counter count 0.arrow_forwardFrom the collector characteristic curves and the dc load line given below, determine the following: (a) Maximum collector current for linear operation (b) Base current at the maximum collector current (c) VCE at maximum collector current. lc (mA) 600 ΜΑ 60- 500 με 50- 400 με 40- 300 μ Α 30- Q-point 200 ΜΑ 20- 10- 100 μ Α 0 VCE (V) 1 2 3 4 5 6 7 8 9 10 [6 Paarrow_forwardProcedure:- 1- Connect the cct. shown in fig.(2). a ADDS DS Fig.(2) 2-For resistive load, measure le output voltage by using oscilloscope ;then sketch this wave. 3- Measure the average values ::f VL and IL: 4- Repeat steps 2 & 3 but for RL load. Report:- 1- Calculate the D.C. output vcl age theoretically and compare it with the test value. 2- Calculate the harmonic cont :nts of the load voltage, and explain how filter components may be selected. 3- Compare between the three-phase half & full-wave uncontrolled bridge rectifier. 4- Draw the waveform for the c:t. shown in fig.(2) but after replaced Di and D3 by thyristors with a 30° and a2 = 90° 5- Draw the waveform for the cct. shown in fig.(2) but after replace the 6-diodes by 6- thyristor. 6- Discuss your results. Please solve No. 4 and 5arrow_forward
- Please I want solution by handwrittenarrow_forward8 00 ! Required information Consider the circuit given below. 0/2 points awarded 3 ΚΩ www t=0 6kM Scored R 1.5i Vc 1 μF 10 V If R = 5.00 kQ, determine vao+). The value of va(0) is 1.4545 V.arrow_forwardI want to know what does it look in a breadboard circuit, because I want to created it but I not sure it is build properly, can you give me an illustuation base on this image, it do need to real, something like virutal examplearrow_forward
- Charge neutrality Since doped semiconductor remains electroneutral, the concentration of negative charges equals the concentration of positive charges. n+ Na,ionized p+Nd,ionized np = n; 2 2 N-Na N N d d р + 2 2 n = Nd-Na 2 + Na - 2 Na +n₁ 2 71/2 1/2 2 2 +n Concentration of electrons and holes 1. Calculate concentrations of electrons and holes at room temperature in Si and Ge with donor concentration of 1.5x10¹7 cm³ and acceptor concentration of 8x1016 cm-3. 2. Will these concentrations change much with the temperature increase to 100°C?arrow_forwardAnswer the questions on the end of the image pleasearrow_forwardAnswer these two questions on the end of the image, please 1.Calculate intrinsic carrier concentration for Si, Ge and GaAs at temperatures -20°C, 20°C (room temperature) and 120°C 2.Compare the obtained data with n and p shown on previous slide 25arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Electricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage LearningEBK ELECTRICAL WIRING RESIDENTIALElectrical EngineeringISBN:9781337516549Author:SimmonsPublisher:CENGAGE LEARNING - CONSIGNMENT

Electricity for Refrigeration, Heating, and Air C...
Mechanical Engineering
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Cengage Learning

EBK ELECTRICAL WIRING RESIDENTIAL
Electrical Engineering
ISBN:9781337516549
Author:Simmons
Publisher:CENGAGE LEARNING - CONSIGNMENT
Electrical Measuring Instruments - Testing Equipment Electrical - Types of Electrical Meters; Author: Learning Engineering;https://www.youtube.com/watch?v=gkeJzRrwe5k;License: Standard YouTube License, CC-BY
01 - Instantaneous Power in AC Circuit Analysis (Electrical Engineering); Author: Math and Science;https://www.youtube.com/watch?v=If25y4Nhvw4;License: Standard YouTube License, CC-BY