Principles Of Electric Circuits
10th Edition
ISBN: 9780134879482
Author: Floyd, Thomas L.
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4P
How many watts are used when 7,500 J of energy are consumed in 5 h?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Find Laplace transform and the corresponding ROC for
x(t) = e˜³¹ fτ sin(2t) u(t)dt
circuit analysissource transform step by step in the most basic formvo find
Compute the Laplace transform of the following time domain function using only
L.T. properties:
f(t)=(t-3)eu(t − 2)
Chapter 4 Solutions
Principles Of Electric Circuits
Ch. 4 - If 100 W of power occurs for 30 s, how much...Ch. 4 - Express the following amounts of power in watts...Ch. 4 - Prob. 3RPCh. 4 - How many kilowatt-hours are used by a 1/2 hp motor...Ch. 4 - Determine P in each circuit of Figure 4-2 for the...Ch. 4 - A 100 W light bulb operates on 120 V. How much...Ch. 4 - Prob. 7RPCh. 4 - A 0.25 W, 1.0 k resistor is connected across a 12...Ch. 4 - How will the total power delivered change if the...Ch. 4 - A power supply has an efficiency of 92%. If PIN is...
Ch. 4 - A certain battery delivers 10 A for 6 h. What is...Ch. 4 - The kilowatt-hour is a unit of power.Ch. 4 - One watt is equal to one joule per second.Ch. 4 - 0.050 W is the same as 50 mW.Ch. 4 - Prob. 4TFQCh. 4 - The kilowatt and the horsepower are both units of...Ch. 4 - The power rating of a resistor should always be...Ch. 4 - The amount of heat that a resistor can dissipate...Ch. 4 - If the voltage across a resistor doubles, the...Ch. 4 - Watts law states that power equals voltage times...Ch. 4 - If the current through a resistor doubles, the...Ch. 4 - Within limits, a regulated power supply can...Ch. 4 - The efficiency of a power supply can be expressed...Ch. 4 - A power supply that has a negative output voltage...Ch. 4 - A battery Ah rating is a guide to the amount of...Ch. 4 - When analyzing a circuit problem, you should...Ch. 4 - Power can be defined as 1. energy 2. heat 3. the...Ch. 4 - Two hundred joules of energy are consumed in 10 s....Ch. 4 - If it takes 300 ms to use 10,000 J of energy, the...Ch. 4 - In 50 kW, there are 1. 500 W 2. 5,000 W 3. 0.5 MW...Ch. 4 - In 0.045 W, there are 1. 45 kW 2. 45 mW 3. 4,500 W...Ch. 4 - For 10 V and 50 mA, the power is 1. 500 mW 2. 0.5W...Ch. 4 - When the current through a 10 k resistor is 10 mA,...Ch. 4 - A 2.2 k resistor dissipates 0.5 W. The current is...Ch. 4 - A 330 resistor dissipates 2 W. The voltage is 1....Ch. 4 - If you used 500 W of power for 24 h, you have used...Ch. 4 - How many watt-hours represent 75 W used for 10 h?...Ch. 4 - A 100 resistor must carry a maximum current of 35...Ch. 4 - The power rating of a resistor that is to handle...Ch. 4 - A 22 half-watt resistor and a 220 half-watt...Ch. 4 - When the needle of an analog ohmmeter indicates...Ch. 4 - A 12 V battery is connected to a 600 load. Under...Ch. 4 - A given power supply is capable of providing 8 A...Ch. 4 - A power supply produces a 0.5 W output with an...Ch. 4 - If the current through a fixed resistor goes from...Ch. 4 - If the voltage across a fixed resistor goes from...Ch. 4 - A variable resistor has 5 V across it. If you...Ch. 4 - If the voltage across a resistor increases from 5...Ch. 4 - If the resistance of a load connected to a battery...Ch. 4 - If the amount of time that a battery supplies...Ch. 4 - If the current that a battery supplies to a load...Ch. 4 - If there is no load connected to a battery, its...Ch. 4 - If the output voltage of a power supply increases,...Ch. 4 - For a constant power supply output voltage, if the...Ch. 4 - For a constant power supply output voltage, if the...Ch. 4 - If the load is removed leaving the power supply...Ch. 4 - Prove that the unit for power (the watt) is...Ch. 4 - Show that there are 3.6 106 joules in a...Ch. 4 - What is the power when energy is consumed at the...Ch. 4 - How many watts are used when 7,500 J of energy are...Ch. 4 - How many watts does 1,000 J in 50 ms equal?Ch. 4 - Convert the following to kilowatts: 1. 1,000 W 2....Ch. 4 - Convert the following to megawatts: 1. 1,000,000 w...Ch. 4 - Convert the following to milliwatts: 1. 1 W 2. 0.4...Ch. 4 - Convert the following to microwatts: 1. 2 W 2....Ch. 4 - Convert the following to watts: 1. 1.5 kW 2. 0.5...Ch. 4 - Prob. 11PCh. 4 - If a 300 W bulb is allowed to burn continuously...Ch. 4 - At the end of a 31-day period, your utility bill...Ch. 4 - Convert 5 106 watt-minutes to kWh.Ch. 4 - Convert 6,700 watt-seconds to kWh.Ch. 4 - For how many seconds must there be 5 A of current...Ch. 4 - If a 75 V source is supplying 2 A to a load, what...Ch. 4 - If a resistor has 5.5 V across it and 3 mA through...Ch. 4 - An electric heater works on 120 V and draws 3 A of...Ch. 4 - What is the power when there are 500 mA of current...Ch. 4 - Calculate the power dissipated by a 10 k resistor...Ch. 4 - If there are 60 V across a 680 resistor, what is...Ch. 4 - A 56 resistor is connected across the terminals...Ch. 4 - If a resistor is to carry 2 A of current and...Ch. 4 - A 12 V source is connected across a 10 resistor....Ch. 4 - The maximum voltage is 1 V and the maximum current...Ch. 4 - A 6.8 k resistor has burned out in a circuit. You...Ch. 4 - A certain type of power resistor comes in the...Ch. 4 - For each circuit in Figure 414, assign the proper...Ch. 4 - A 50 load uses 1 W of power. What is the output...Ch. 4 - Assume that an alkaline D-cell battery can...Ch. 4 - What is the total energy in joules that is...Ch. 4 - A battery can provide an average of 1.5 A of...Ch. 4 - How much average current can be drawn from an 80...Ch. 4 - If a battery is rated at 650 mAh, how much average...Ch. 4 - If the input power is 500 mW and the output power...Ch. 4 - To operate at 85% efficiency, how much output...Ch. 4 - Prob. 39P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- circuit analysisuse source Transform and step by step in the most basic formarrow_forwardNot: I need also pictures cct diagram and result Question: I need a MATLAB/Simulink model for a Boost Converter used to charge a battery, powered by a PV solar panel. The model should include: 1. A PV solar panel as the input power source. 2. A Boost Converter circuit for voltage regulation. 3. A battery charging system. 4. Simulation results showing voltage, current, and efficiency of the system. Important: Please provide: 1. The Simulink file of the model. 2. Clear screenshots showing the circuit connections in MATLAB/Simulink. 3. Screenshots of the simulation results (voltage, current, efficiency, etc.).arrow_forwardA Butterworth low-pass filter has the following specification: max = 0.5 dB, min =30dB p = 750rad/s and s = 1750rad/si) Determine the TF for Butterworth LP filterii) Q of the polesiii) Determine the half-power frequency 0iv) Determine the actual attenuation at the edge of the pass-band and the edge of the stop-band, (p) and (s).arrow_forward
- Find the inverse of Laplace transform s-1 5+5 , Re[s]>-3 (s+1)(s-3) s+5 a) s²(s+3) b) c) (S-1)(s+1)2 d) s+5 , i) Re[s]> 3 ii) Re[s]-1 ii) Re[s] 1 (s-1)(s-2)(s-3)' , i) Re[s]> 3 ii) Re[s]<1 iii) Iarrow_forward1- Find the Laplace transform and the corresponding ROC of the following signals. a) x(t) = [et + et cos(3t)]u(t) b)x(t) = e-alte-atu(t) + eatu(-t), consider a>0. c) x(t)=8(t) +8(t-1)+8(t−2) d) x(t) = u(-1)-u(1) e) x(t) = e-³t sin(2t)u(t)dr f)x(t) =[r³ +sin(2t)]u(t)dt g)x(t)=t2e2 cos(5t) u(t - 1)arrow_forwardThe transfer function of causal LTI system is H(s) = s+1 (s+1)(s+3) Determine the response y(t) when the input x(t) = elt, for the following region of convergence :) Re[s]> -3 ii) Re[s]Re[s]> -3arrow_forwardConsider the signal y(t) = x₁(t-2) x2(-t + 3) where x₁(t) = e−2tu(t) and x2(t) = eu(t). Determine the Laplace transform of y(t) using the properties. Also find the ROC.arrow_forwardConsider the LTI system with the input x(t) = eu(t) and the impulse response h(t) = e−2tu(t). a) Determine the Laplace transform of x(t) and h(t). b) Using convolutional property, determine the Laplace transform of the output y(t). Find the ROC for each case.arrow_forward2) a) Plot the voltage transfer characteristic of the circuit below. Assume diode and zener are ideal with VDon=0V (20Pts) view 1K 1, B-100, VBE =0,7V ovo VCEsat = 0V, 2K It 10 V 8V zenerarrow_forwardcircuit dchow find vth step by step rth find RL that enables the circuit to deliver maximum power to terminal then plot norton cırcuitarrow_forwardDon't use ai to answer I will report you answerarrow_forwardSA [(a) 5 V (b) 5 V] 13. Find the voltage V in the network shown in Fig. 2.44 (a) if R is 10 2 and (b) 20 2 14. In the network of Fig. 2.44 (b), calculate the voltage between points a and b i.e. Vab [30 V] (Elect. Engg. I, Bombay Univ.) 4A 78A 4 h 10A ww 3A (a) ΤΑ 6A DC Network Theorems SA Is 1A 77 12A www 12 6A 8A Fig. 2.44 (b) [Hint: In the above two cases, the two closed loops are independent and no current passes between them].arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- EBK ELECTRICAL WIRING RESIDENTIALElectrical EngineeringISBN:9781337516549Author:SimmonsPublisher:CENGAGE LEARNING - CONSIGNMENTElectricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage LearningDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage Learning
EBK ELECTRICAL WIRING RESIDENTIAL
Electrical Engineering
ISBN:9781337516549
Author:Simmons
Publisher:CENGAGE LEARNING - CONSIGNMENT
Electricity for Refrigeration, Heating, and Air C...
Mechanical Engineering
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Cengage Learning
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Electrical Measuring Instruments - Testing Equipment Electrical - Types of Electrical Meters; Author: Learning Engineering;https://www.youtube.com/watch?v=gkeJzRrwe5k;License: Standard YouTube License, CC-BY
01 - Instantaneous Power in AC Circuit Analysis (Electrical Engineering); Author: Math and Science;https://www.youtube.com/watch?v=If25y4Nhvw4;License: Standard YouTube License, CC-BY