Principles Of Electric Circuits
10th Edition
ISBN: 9780134879482
Author: Floyd, Thomas L.
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 13P
At the end of a 31-day period, your utility bill shows that you have used 1,500 kWh. What is your average daily power usage?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I need a detailed solution to a
problem.
The far-zone electric field intensity (array factor) of an end-fire two-element array
antenna, placed along the z-axis and radiating into free-space, is given by
E=cos (cos - 1)
Find the directivity using
(a) Kraus' approximate formula
(b) the DIRECTIVITY computer program at the end of this chapter
Repeat Problem 2.19 when
E = cos
-jkr
0505π
$[
(cos + 1)
(a). Elmax = Cost (case-1)] | max"
= 1 at 8-0°.
0.707 Emax = 0.707.(1) = cos [(cose,-1)]
(cose-1) =
± 0,= {Cos' (2)
= does not exist
(105(0)=
90° = rad.
Bir
Do≈ 4T
ar=2() =
=
Bar
4-1-273 = 1.049 dB
T₂
a. Elmax = cos((cose +1)),
0.707 = cos (Close,+1))
= 1
at 6 = π
Imax
(Cose+1)=== G₁ = cos(-2) does not exist.
Girar=2()=π.
4T
\cos (0) + 90° + rad
Do≈ = +=1.273=1.049dB
IT 2
I need an expert mathematical solution.
The E-field pattern of an antenna. independent of , varies as follows:
0° ≤ 0≤ 45°
E = 0
45°
{1
90°
90° < 0 ≤ 180°
(a) What is the directivity of this antenna?
(b) What is the radiation resistance of the antenna at 200 m from it if the field is equal
to 10 V/m (rms) for Ø
=
0° at that distance and the terminal current is 5 A (rms)?
I need an expert mathematical solution.
The normalized far-zone field pattern of an antenna is given by
E =
{®
(sin
cos)/
0
Find the directivity using
0 ≤ 0 ≤ π and 0≤ 0≤ π/2.
3m2sds2,
elsewhere
Chapter 4 Solutions
Principles Of Electric Circuits
Ch. 4 - If 100 W of power occurs for 30 s, how much...Ch. 4 - Express the following amounts of power in watts...Ch. 4 - Prob. 3RPCh. 4 - How many kilowatt-hours are used by a 1/2 hp motor...Ch. 4 - Determine P in each circuit of Figure 4-2 for the...Ch. 4 - A 100 W light bulb operates on 120 V. How much...Ch. 4 - Prob. 7RPCh. 4 - A 0.25 W, 1.0 k resistor is connected across a 12...Ch. 4 - How will the total power delivered change if the...Ch. 4 - A power supply has an efficiency of 92%. If PIN is...
Ch. 4 - A certain battery delivers 10 A for 6 h. What is...Ch. 4 - The kilowatt-hour is a unit of power.Ch. 4 - One watt is equal to one joule per second.Ch. 4 - 0.050 W is the same as 50 mW.Ch. 4 - Prob. 4TFQCh. 4 - The kilowatt and the horsepower are both units of...Ch. 4 - The power rating of a resistor should always be...Ch. 4 - The amount of heat that a resistor can dissipate...Ch. 4 - If the voltage across a resistor doubles, the...Ch. 4 - Watts law states that power equals voltage times...Ch. 4 - If the current through a resistor doubles, the...Ch. 4 - Within limits, a regulated power supply can...Ch. 4 - The efficiency of a power supply can be expressed...Ch. 4 - A power supply that has a negative output voltage...Ch. 4 - A battery Ah rating is a guide to the amount of...Ch. 4 - When analyzing a circuit problem, you should...Ch. 4 - Power can be defined as 1. energy 2. heat 3. the...Ch. 4 - Two hundred joules of energy are consumed in 10 s....Ch. 4 - If it takes 300 ms to use 10,000 J of energy, the...Ch. 4 - In 50 kW, there are 1. 500 W 2. 5,000 W 3. 0.5 MW...Ch. 4 - In 0.045 W, there are 1. 45 kW 2. 45 mW 3. 4,500 W...Ch. 4 - For 10 V and 50 mA, the power is 1. 500 mW 2. 0.5W...Ch. 4 - When the current through a 10 k resistor is 10 mA,...Ch. 4 - A 2.2 k resistor dissipates 0.5 W. The current is...Ch. 4 - A 330 resistor dissipates 2 W. The voltage is 1....Ch. 4 - If you used 500 W of power for 24 h, you have used...Ch. 4 - How many watt-hours represent 75 W used for 10 h?...Ch. 4 - A 100 resistor must carry a maximum current of 35...Ch. 4 - The power rating of a resistor that is to handle...Ch. 4 - A 22 half-watt resistor and a 220 half-watt...Ch. 4 - When the needle of an analog ohmmeter indicates...Ch. 4 - A 12 V battery is connected to a 600 load. Under...Ch. 4 - A given power supply is capable of providing 8 A...Ch. 4 - A power supply produces a 0.5 W output with an...Ch. 4 - If the current through a fixed resistor goes from...Ch. 4 - If the voltage across a fixed resistor goes from...Ch. 4 - A variable resistor has 5 V across it. If you...Ch. 4 - If the voltage across a resistor increases from 5...Ch. 4 - If the resistance of a load connected to a battery...Ch. 4 - If the amount of time that a battery supplies...Ch. 4 - If the current that a battery supplies to a load...Ch. 4 - If there is no load connected to a battery, its...Ch. 4 - If the output voltage of a power supply increases,...Ch. 4 - For a constant power supply output voltage, if the...Ch. 4 - For a constant power supply output voltage, if the...Ch. 4 - If the load is removed leaving the power supply...Ch. 4 - Prove that the unit for power (the watt) is...Ch. 4 - Show that there are 3.6 106 joules in a...Ch. 4 - What is the power when energy is consumed at the...Ch. 4 - How many watts are used when 7,500 J of energy are...Ch. 4 - How many watts does 1,000 J in 50 ms equal?Ch. 4 - Convert the following to kilowatts: 1. 1,000 W 2....Ch. 4 - Convert the following to megawatts: 1. 1,000,000 w...Ch. 4 - Convert the following to milliwatts: 1. 1 W 2. 0.4...Ch. 4 - Convert the following to microwatts: 1. 2 W 2....Ch. 4 - Convert the following to watts: 1. 1.5 kW 2. 0.5...Ch. 4 - Prob. 11PCh. 4 - If a 300 W bulb is allowed to burn continuously...Ch. 4 - At the end of a 31-day period, your utility bill...Ch. 4 - Convert 5 106 watt-minutes to kWh.Ch. 4 - Convert 6,700 watt-seconds to kWh.Ch. 4 - For how many seconds must there be 5 A of current...Ch. 4 - If a 75 V source is supplying 2 A to a load, what...Ch. 4 - If a resistor has 5.5 V across it and 3 mA through...Ch. 4 - An electric heater works on 120 V and draws 3 A of...Ch. 4 - What is the power when there are 500 mA of current...Ch. 4 - Calculate the power dissipated by a 10 k resistor...Ch. 4 - If there are 60 V across a 680 resistor, what is...Ch. 4 - A 56 resistor is connected across the terminals...Ch. 4 - If a resistor is to carry 2 A of current and...Ch. 4 - A 12 V source is connected across a 10 resistor....Ch. 4 - The maximum voltage is 1 V and the maximum current...Ch. 4 - A 6.8 k resistor has burned out in a circuit. You...Ch. 4 - A certain type of power resistor comes in the...Ch. 4 - For each circuit in Figure 414, assign the proper...Ch. 4 - A 50 load uses 1 W of power. What is the output...Ch. 4 - Assume that an alkaline D-cell battery can...Ch. 4 - What is the total energy in joules that is...Ch. 4 - A battery can provide an average of 1.5 A of...Ch. 4 - How much average current can be drawn from an 80...Ch. 4 - If a battery is rated at 650 mAh, how much average...Ch. 4 - If the input power is 500 mW and the output power...Ch. 4 - To operate at 85% efficiency, how much output...Ch. 4 - Prob. 39P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- I need an expert mathematical solution. The radiation intensity of an aperture antenna, mounted on an infinite ground plane with perpendicular to the aperture. is rotationally symmetric (not a function of 4), and it is given by sin (7 sin 0) U π sin Find the approximate directivity (dimensionless and in dB) usingarrow_forwardWaveforms v1(t) and v2(t) are given by:v1(t) = −4 sin(6π ×10^4t +30◦) V,v2(t) = 2cos(6π ×10^4t −30◦) V.Does v2(t) lead or lag v1(t), and by what phase angle?arrow_forward7.1 Express the current waveform i(t) = -0.2 cos(6 × 10°1 +60°) mA in standard cosine form and then determine the following: (a) Its amplitude, frequency, and phase angle. (b) i(t) at t=0.1 ns.arrow_forward
- 3. Consider the RC circuit with a constant voltage source shown in the diagram below. The values of the resistor, capacitor, and input voltage are R = 50, C = 10 µF, and V = 6V, respectively. Assume that there is initially no charge on the capacitor before the switch is closed. Vo ↑i(t) R w C When the switch closes at time t = 0, the current begins to flow as a function of time according to the equation i(t) = ioencarrow_forwardQ2. a) A three-phase 415 V, 4-pole, 50 Hz, A-connected induction motor was tested. The obtained results are: (i) (ii) No load test 50 Hz: Blocked rotor test, 10 Hz: DC test: Vnl=415 V, Pnl=1200 W, In=11 A Vbr 10 V, Pbr=1500 W, Ibr=91 A VDC 3 V, IDC=107 A Draw the per-phase equivalent electrical circuit of the motor Draw the circuits for no-load and block-rotor tests and indicate the slip for each of the tests. (iii) Identify the motor parameters (iv) Calculate the motor's starting torque at the rated voltage.arrow_forward4. Consider the RC circuit with a sinusoid voltage source shown in the diagram below. The values of the resistor, capacitor, input voltage amplitude and frequency are R-20012, C-5pF", Vo-10V, and w=500 rad/s, respectively. Assume that the circuit has reached steady state. Vрейте 2 The input voltage can be described using the complex sinusoid function V(t)-Vo and the physical voltage is obtained by taking the real part of V(t). The voltage drop across the capacitor is given by a sinusoid with same the frequency was the input voltage, but a different magnitude and different phase. In complex form, the capacitor's voltage is given by Vc(t)=1+jwRC For the following questions, use the template file Assignment TemplateQ2.m as the starting point for your MATLAB code. (a) (6 marks) Use MATLAB to make a graph that shows the real part of the input voltage source ReV(t)] and the real part of the voltage drop across the capacitor Re[Ve(t)] as a function of time. Choose the time scale so that two…arrow_forward
- Consider the microgrid given in figure 8-56. The positive sequence impedance of the transmission Lines is given in -line diagram (figure 8.5%). The system data are as follows: the one PV generating Station: 2MW, 460V. AC, positive, negative and zero Sequence impedance of each line is equal to 10%. The generator negativ Sequence impedance is equal to the positive Sequence, and the Zero Sequence impedance is equal to half (½) of positiv Sequence impedance. Transformers positive sequence impedance is equal to the negative sequence and equal to the zero sequence impedance Station DC/AC CB Acpu bus CB www S+js 5 1+jlo M 2 T2 SB CB A Jus -3+16 local utilityarrow_forwarda) The current drawn by a single-phase converter is represented by the waveform in the figure below. Use Fourier series analysis to determine an expression for obtaining the rms values of the fundamental and the harmonics of the source current. Hence, express the rms value of the fundamental as well as the first three harmonics of the waveform. i(t) Id - Id π 元 b) Fig. Input current waveform of a single phase bridge rectifier A sinusoidal voltage with a peak value of 300 V is applied to the converter in (a) drawing a square-wave current with a peak value of 15 A. Assuming that the zero crossing of the current waveform is 45° behind that of the input voltage waveform, calculate: (i) the average power drawn by the converter, (ii) the form factor (FF) and ripple factor (RF) (iii) the total harmonic distortion (THD%) of the input current.arrow_forwardTransformer 600 V Transformer L₁ L₂ L3 4 (a) 600 V L₁ L₂ L3 L₁ (b) Figure 3.arrow_forward
- (2 marks) Using Kirchoff's voltage law: V(t) = VR(t) + Vc(t), show that the voltage drop across the resistor is given by the equation VR(t) jwRC 1+jwRC Voearrow_forwardA ferrite ETD44 core type material is to be used in the converter design. If Bmax = 0.52T, and 350 turns of 1.5x10³cm² copper wire is to be wound around the core material to allow a flow of 5A maximum current, compute for the (a) inductor resistance, and the (b) inductance.arrow_forwardDon't use ai to answer I will report you answerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Electricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage LearningDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage Learning
Electricity for Refrigeration, Heating, and Air C...
Mechanical Engineering
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Cengage Learning
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
What is an electric furnace and how does it work?; Author: Fire & Ice Heating and Air Conditioning Inc;https://www.youtube.com/watch?v=wjAWecPGi0M;License: Standard Youtube License