Pearson eText Principles of Operations Management: Sustainability and Supply Chain Management -- Instant Access (Pearson+)
11th Edition
ISBN: 9780135639221
Author: Jay Heizer, Barry Render
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 35P
a)
Summary Introduction
To forecast: The registration for week 11 using naïve
b)
Summary Introduction
To forecast: The registration starting from week 3 and ending with week 11 using a 2-week moving average.
c)
Summary Introduction
To forecast: The registration starting from week 5 and ending with week 11 using a 4-week moving average.
d)
Summary Introduction
To plot: The original data and forecasts in the graph.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Registration numbers for an accounting seminar over the past I 0 weeks are shown below: a) Starting with week 2 and ending with week II, forecast registrations using the naive forecasting method.b) Starting with week 3 and ending with week II, forecast registration using a 2-week moving average.c) Starting with week 5 and ending with week I 1, forecast registrations using a 4-week moving average.d) Plot the original data and the three forecasts on the same graph. Which forecast smoothes the data the most? Which forecast responds to change the best?
Forecasts based on averages. Given the following data:PeriodNumber ofComplaints1 602 653 554 585 64Prepare a forecast for period 6 using each of these approaches:a. The appropriate naive approach.b. A three-period moving average.c. A weighted average using weights of .50 (most recent), .30, and .20.d. Exponential smoothing with a smoothing constant of .40.
Here are the actual tabulated demands for an item for a nine-month period (January through September). Your supervisor wants to test two forecasting methods to see which method was better over this period.
MONTH
ACTUAL
January
120
February
145
March
146
April
171
May
154
June
182
July
138
August
135
September
146
a. Forecast April through September using a three-month moving average.
b. Use simple exponential smoothing with an alpha of 0.20 to estimate April through September, using the average of January through March as the initial forecast for April.
c-1. Calculate MAD for Three-month moving average and Exponential smoothing.
c-2. Use MAD to decide which method produced the better forecast over the six-month period.
Chapter 4 Solutions
Pearson eText Principles of Operations Management: Sustainability and Supply Chain Management -- Instant Access (Pearson+)
Ch. 4 - Ethical Dilemma We live in a society obsessed with...Ch. 4 - What is a qualitative forecasting model, and when...Ch. 4 - Identify and briefly describe the two general...Ch. 4 - Identify the three forecasting time horizons....Ch. 4 - Briefly describe the steps that are used to...Ch. 4 - A skeptical manager asks what medium-range...Ch. 4 - Explain why such forecasting devices as moving...Ch. 4 - What is the basic difference between a weighted...Ch. 4 - What three methods are used to determine the...Ch. 4 - Research and briefly describe the Delphi...
Ch. 4 - What is the primary difference between a...Ch. 4 - Define time series.Ch. 4 - What effect does the value of the smoothing...Ch. 4 - Explain the value of seasonal indices in...Ch. 4 - Prob. 14DQCh. 4 - In your own words, explain adaptive forecasting.Ch. 4 - Prob. 16DQCh. 4 - Explain, in your own words, the meaning of the...Ch. 4 - Prob. 18DQCh. 4 - Give examples of industries that are affected by...Ch. 4 - Prob. 20DQCh. 4 - Prob. 21DQCh. 4 - CEO John Goodale, at Southern Illinois Power and...Ch. 4 - The following gives the number of pints of type B...Ch. 4 - a) Plot the above data on a graph. Do you observe...Ch. 4 - Refer to Problem 4.2. Develop a forecast for years...Ch. 4 - A check-processing center uses exponential...Ch. 4 - The Carbondale Hospital is considering the...Ch. 4 - The monthly sales for Yazici Batteries, Inc., were...Ch. 4 - Prob. 7PCh. 4 - Daily high temperatures in St. Louis for the last...Ch. 4 - Lenovo uses the ZX-81 chip in some of its laptop...Ch. 4 - Data collected on the yearly registrations for a...Ch. 4 - Use exponential smoothing with a smoothing...Ch. 4 - Prob. 12PCh. 4 - At you can see in the following table, demand for...Ch. 4 - Prob. 14PCh. 4 - Refer to Solved Problem 4.1 on page 144. a) Use a...Ch. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Income at the architectural firm Spraggins and...Ch. 4 - Resolve Problem 4.19 with = .1 and =.8. Using...Ch. 4 - Prob. 21PCh. 4 - Refer to Problem 4.21. Complete the trend-adjusted...Ch. 4 - Prob. 23PCh. 4 - The following gives the number of accidents that...Ch. 4 - In the past, Peter Kelles tire dealership in Baton...Ch. 4 - George Kyparisis owns a company that manufactures...Ch. 4 - Attendance at Orlandos newest Disneylike...Ch. 4 - Prob. 28PCh. 4 - The number of disk drives (in millions) made at a...Ch. 4 - Prob. 30PCh. 4 - Emergency calls to the 911 system of Durham, North...Ch. 4 - Using the 911 call data in Problem 4.31, forecast...Ch. 4 - Storrs Cycles has just started selling the new...Ch. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - Prob. 37PCh. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - Mark Gershon, owner of a musical instrument...Ch. 4 - Prob. 44PCh. 4 - Cafe Michigans manager, Gary Stark, suspects that...Ch. 4 - Prob. 46PCh. 4 - The number of auto accidents in Athens, Ohio, is...Ch. 4 - Rhonda Clark, a Slippery Rock, Pennsylvania, real...Ch. 4 - Accountants at the Tucson firm, Larry Youdelman,...Ch. 4 - Prob. 50PCh. 4 - Using the data in Problem 4.30, apply linear...Ch. 4 - Bus and subway ridership for the summer months in...Ch. 4 - Prob. 53PCh. 4 - Dave Fletcher, the general manager of North...Ch. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - Prob. 57PCh. 4 - Sales of tablet computers at Ted Glickmans...Ch. 4 - The following are monthly actual and forecast...Ch. 4 - Prob. 1CSCh. 4 - Prob. 2CSCh. 4 - Prob. 3CSCh. 4 - Prob. 1.1VCCh. 4 - Prob. 1.2VCCh. 4 - Using Perezs multiple-regression model, what would...Ch. 4 - Prob. 1.4VCCh. 4 - Prob. 2.1VCCh. 4 - Prob. 2.2VCCh. 4 - Prob. 2.3VCCh. 4 - Prob. 2.4VCCh. 4 - Prob. 2.5VC
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- Under what conditions might a firm use multiple forecasting methods?arrow_forwardThe Baker Company wants to develop a budget to predict how overhead costs vary with activity levels. Management is trying to decide whether direct labor hours (DLH) or units produced is the better measure of activity for the firm. Monthly data for the preceding 24 months appear in the file P13_40.xlsx. Use regression analysis to determine which measure, DLH or Units (or both), should be used for the budget. How would the regression equation be used to obtain the budget for the firms overhead costs?arrow_forwardThe file P13_42.xlsx contains monthly data on consumer revolving credit (in millions of dollars) through credit unions. a. Use these data to forecast consumer revolving credit through credit unions for the next 12 months. Do it in two ways. First, fit an exponential trend to the series. Second, use Holts method with optimized smoothing constants. b. Which of these two methods appears to provide the best forecasts? Answer by comparing their MAPE values.arrow_forward
- The file P13_22.xlsx contains total monthly U.S. retail sales data. While holding out the final six months of observations for validation purposes, use the method of moving averages with a carefully chosen span to forecast U.S. retail sales in the next year. Comment on the performance of your model. What makes this time series more challenging to forecast?arrow_forwardThe file P13_29.xlsx contains monthly time series data for total U.S. retail sales of building materials (which includes retail sales of building materials, hardware and garden supply stores, and mobile home dealers). a. Is seasonality present in these data? If so, characterize the seasonality pattern. b. Use Winters method to forecast this series with smoothing constants = = 0.1 and = 0.3. Does the forecast series seem to track the seasonal pattern well? What are your forecasts for the next 12 months?arrow_forwardThe file P13_26.xlsx contains the monthly number of airline tickets sold by the CareFree Travel Agency. a. Create a time series chart of the data. Based on what you see, which of the exponential smoothing models do you think will provide the best forecasting model? Why? b. Use simple exponential smoothing to forecast these data, using a smoothing constant of 0.1. c. Repeat part b, but search for the smoothing constant that makes RMSE as small as possible. Does it make much of an improvement over the model in part b?arrow_forward
- The owner of a restaurant in Bloomington, Indiana, has recorded sales data for the past 19 years. He has also recorded data on potentially relevant variables. The data are listed in the file P13_17.xlsx. a. Estimate a simple regression equation involving annual sales (the dependent variable) and the size of the population residing within 10 miles of the restaurant (the explanatory variable). Interpret R-square for this regression. b. Add another explanatory variableannual advertising expendituresto the regression equation in part a. Estimate and interpret this expanded equation. How does the R-square value for this multiple regression equation compare to that of the simple regression equation estimated in part a? Explain any difference between the two R-square values. How can you use the adjusted R-squares for a comparison of the two equations? c. Add one more explanatory variable to the multiple regression equation estimated in part b. In particular, estimate and interpret the coefficients of a multiple regression equation that includes the previous years advertising expenditure. How does the inclusion of this third explanatory variable affect the R-square, compared to the corresponding values for the equation of part b? Explain any changes in this value. What does the adjusted R-square for the new equation tell you?arrow_forwardThe file P13_28.xlsx contains monthly retail sales of U.S. liquor stores. a. Is seasonality present in these data? If so, characterize the seasonality pattern. b. Use Winters method to forecast this series with smoothing constants = = 0.1 and = 0.3. Does the forecast series seem to track the seasonal pattern well? What are your forecasts for the next 12 months?arrow_forwardThe file P13_02.xlsx contains five years of monthly data on sales (number of units sold) for a particular company. The company suspects that except for random noise, its sales are growing by a constant percentage each month and will continue to do so for at least the near future. a. Explain briefly whether the plot of the series visually supports the companys suspicion. b. By what percentage are sales increasing each month? c. What is the MAPE for the forecast model in part b? In words, what does it measure? Considering its magnitude, does the model seem to be doing a good job? d. In words, how does the model make forecasts for future months? Specifically, given the forecast value for the last month in the data set, what simple arithmetic could you use to obtain forecasts for the next few months?arrow_forward
- The file P13_25.xlsx contains the quarterly numbers of applications for home mortgage loans at a branch office of Northern Central Bank. a. Create a time series chart of the data. Based on what you see, which of the exponential smoothing models do you think will provide the best forecasting model? Why? b. Use simple exponential smoothing to forecast these data, using a smoothing constant of 0.1. c. Repeat part b, but search for the smoothing constant that makes RMSE as small as possible. Does it make much of an improvement over the model in part b? Is it guaranteed to produce better forecasts for the future?arrow_forwardJames and Maddie work for Statesboro Toolworks. Their boss Jenny tells them that she will promote the person who has the best possible forecast for the firm's DG5-S electric tool. Jenny emailed them the demand data from 10 days worth of sales and then asked each to create a forecast for the next 10 days. The table below shows (1) Actual Demand data (2nd Column), James forecast (3rd column), and Maddie's forecast (4th column). Calculate which of the two has the more accurate forecast. Who gets the promotion? The combatant's forecasts and the actual egg production are shown in the table. Which forecaster was more accurate and should be hired as a result of his performance on this trial? Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Forecast Forecast (James) (Maddie) 102 102 107 106 105 113 115 113 109 118 124 119 142 136 130 154 148 142 166 160 154 181 174 167 198 190 182 206 202 195 Actual Final solution: The person who gets the promotion will be: What is Maddie's MAPE?…arrow_forwardWhich of the following is not true of qualitative forecasting methods? a. They generally work best when combined with a quantitative approach b. They are more objective than quantitative methods c. They are largely non-mathematical d. They are not restricted to only the quantifiable data e. They come with the danger of biasing the forecast due to subjectivity Explain both true and false options brieflyarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,Contemporary MarketingMarketingISBN:9780357033777Author:Louis E. Boone, David L. KurtzPublisher:Cengage LearningMarketingMarketingISBN:9780357033791Author:Pride, William MPublisher:South Western Educational Publishing
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Contemporary Marketing
Marketing
ISBN:9780357033777
Author:Louis E. Boone, David L. Kurtz
Publisher:Cengage Learning
Marketing
Marketing
ISBN:9780357033791
Author:Pride, William M
Publisher:South Western Educational Publishing
Forecasting 2: Forecasting Types & Qualitative methods; Author: Adapala Academy & IES GS for Exams;https://www.youtube.com/watch?v=npWni9K6Z_g;License: Standard YouTube License, CC-BY
Introduction to Forecasting - with Examples; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=98K7AG32qv8;License: Standard Youtube License