
Introduction to mathematical programming
4th Edition
ISBN: 9780534359645
Author: Jeffrey B. Goldberg
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Expert Solution & Answer
Chapter 4, Problem 16RP
a.
Explanation of Solution
- Consider the following variables:
- x1 = items of type 1
- x2 = items of type 2
- Weight of item is a1 lb and item 2 weighs a2 lb.
- Therefore, the constraints is a1x1+a2x2 ≤ b
- Each type 1 item carries a benefit of c1 units, each type 2 item carries a benefit of c2 units...
- x1 = items of type 1
- x2 = items of type 2
b.
Explanation of Solution
- from the result of part (a), it can be observed that the constraint in linear
programming problem is less than or equal to type.
- So, add the slack variable s1 to the constraint.
- Thus, the standard form of the linear programming problem is,
- Max z= c1x1+c2x2
- Subject to constraints,
- a1x1+a2x2+s1 = b
- The initial simplex table is shown below:
z x1 x2 s1 rhs Basic variable 1 -c1 -c2 0 0 z = 0 0 a1 a2 1 b s1 = b
- Now, there are two negative entries in the row0, suppose the most negative entry is in column 2.
- Therefore, choose entering variable to be x2.
- The leaving variable is calculated with the use of the following formula,
- Leaving variable = {(rhs/x1), x1 ≥ 0}
- Consider the below table:
z x1 x2 s1 rhs Basic variable 1 -c1 -c2 0 0 - 0 a1 a2 1 b (b/a2)→
- From the above table, the pivot table is intersection of both entering and leaving variables...
- Max z= c1x1+c2x2
- Subject to constraints,
- a1x1+a2x2+s1 = b
z | x1 | x2 | s1 | rhs | Basic variable |
1 | -c1 | -c2 | 0 | 0 | z = 0 |
0 | a1 | a2 | 1 | b | s1 = b |
- Leaving variable = {(rhs/x1), x1 ≥ 0}
z | x1 | x2 | s1 | rhs | Basic variable |
1 | -c1 | -c2 | 0 | 0 | - |
0 | a1 | a2 | 1 | b | (b/a2)→ |
c.
Explanation of Solution
- The following are the assumptions that are violated by this formula:
- Deterministic Nature
- Additivity
- Direct Proportionality
- Fractionally
- The follo...
- Deterministic Nature
- Additivity
- Direct Proportionality
- Fractionally
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
find
ж
185
х?
32
O să vă imaginea și date compune o problemă 42 31 1 0 9
Find the largest interval centered about x = 0 for which the given initial value problem has a unique solution.
y" + (tan x)y = ex, y(0) = 1, y'(0) = 0
Chapter 4 Solutions
Introduction to mathematical programming
Ch. 4.1 - Prob. 1PCh. 4.1 - Prob. 2PCh. 4.1 - Prob. 3PCh. 4.4 - Prob. 1PCh. 4.4 - Prob. 2PCh. 4.4 - Prob. 3PCh. 4.4 - Prob. 4PCh. 4.4 - Prob. 5PCh. 4.4 - Prob. 6PCh. 4.4 - Prob. 7P
Ch. 4.5 - Prob. 1PCh. 4.5 - Prob. 2PCh. 4.5 - Prob. 3PCh. 4.5 - Prob. 4PCh. 4.5 - Prob. 5PCh. 4.5 - Prob. 6PCh. 4.5 - Prob. 7PCh. 4.6 - Prob. 1PCh. 4.6 - Prob. 2PCh. 4.6 - Prob. 3PCh. 4.6 - Prob. 4PCh. 4.7 - Prob. 1PCh. 4.7 - Prob. 2PCh. 4.7 - Prob. 3PCh. 4.7 - Prob. 4PCh. 4.7 - Prob. 5PCh. 4.7 - Prob. 6PCh. 4.7 - Prob. 7PCh. 4.7 - Prob. 8PCh. 4.7 - Prob. 9PCh. 4.8 - Prob. 1PCh. 4.8 - Prob. 2PCh. 4.8 - Prob. 3PCh. 4.8 - Prob. 4PCh. 4.8 - Prob. 5PCh. 4.8 - Prob. 6PCh. 4.10 - Prob. 1PCh. 4.10 - Prob. 2PCh. 4.10 - Prob. 3PCh. 4.10 - Prob. 4PCh. 4.10 - Prob. 5PCh. 4.11 - Prob. 1PCh. 4.11 - Prob. 2PCh. 4.11 - Prob. 3PCh. 4.11 - Prob. 4PCh. 4.11 - Prob. 5PCh. 4.11 - Prob. 6PCh. 4.12 - Prob. 1PCh. 4.12 - Prob. 2PCh. 4.12 - Prob. 3PCh. 4.12 - Prob. 4PCh. 4.12 - Prob. 5PCh. 4.12 - Prob. 6PCh. 4.13 - Prob. 2PCh. 4.14 - Prob. 1PCh. 4.14 - Prob. 2PCh. 4.14 - Prob. 3PCh. 4.14 - Prob. 4PCh. 4.14 - Prob. 5PCh. 4.14 - Prob. 6PCh. 4.14 - Prob. 7PCh. 4.16 - Prob. 1PCh. 4.16 - Prob. 2PCh. 4.16 - Prob. 3PCh. 4.16 - Prob. 5PCh. 4.16 - Prob. 7PCh. 4.16 - Prob. 8PCh. 4.16 - Prob. 9PCh. 4.16 - Prob. 10PCh. 4.16 - Prob. 11PCh. 4.16 - Prob. 12PCh. 4.16 - Prob. 13PCh. 4.16 - Prob. 14PCh. 4.17 - Prob. 1PCh. 4.17 - Prob. 2PCh. 4.17 - Prob. 3PCh. 4.17 - Prob. 4PCh. 4.17 - Prob. 5PCh. 4.17 - Prob. 7PCh. 4.17 - Prob. 8PCh. 4 - Prob. 1RPCh. 4 - Prob. 2RPCh. 4 - Prob. 3RPCh. 4 - Prob. 4RPCh. 4 - Prob. 5RPCh. 4 - Prob. 6RPCh. 4 - Prob. 7RPCh. 4 - Prob. 8RPCh. 4 - Prob. 9RPCh. 4 - Prob. 10RPCh. 4 - Prob. 12RPCh. 4 - Prob. 13RPCh. 4 - Prob. 14RPCh. 4 - Prob. 16RPCh. 4 - Prob. 17RPCh. 4 - Prob. 18RPCh. 4 - Prob. 19RPCh. 4 - Prob. 20RPCh. 4 - Prob. 21RPCh. 4 - Prob. 22RPCh. 4 - Prob. 23RPCh. 4 - Prob. 24RPCh. 4 - Prob. 26RPCh. 4 - Prob. 27RPCh. 4 - Prob. 28RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- The table below shows the acreage, number of visitors, and total revenue of state parks and recreational areas in Massachusetts, New York, and Vermont in 2010. State Acreage (in thousands) Visitors (in thousands) Revenue (in thousands) Massachusetts 350 35,271 $12,644 New York 1,354 56,322 $85,558 Vermont 69 758 $10,969 Select the three true statements based on the data in the table. A. Vermont had the highest revenue per acre of state parks and recreational areas. B. Vermont had approximately 11 visitors per acre of state parks and recreational areas. C. New York had the highest number of visitors per acre of state parks and recreational areas. D. Massachusetts had approximately 36 visitors per acre of state parks and recreational areas. E. New York had revenue of approximately $63.19 per acre of state parks and recreational areas. F. Massachusetts had revenue of approximately $0.03 per acre of state parks and recreational areas.arrow_forwardMATLAB. Awnser the * parts in the commentsarrow_forwardMatlab. Awnser the * questions in the comments of the code.arrow_forward
- Prove by mathematical induction that for any positive integer n, the sum of the cubes of the first n natural numbers is given by: n Σκ k=1 (n(n + 1))²arrow_forward1 L'Ina (ln x) 2020 dx 0arrow_forwardCalibri BIUAAAA ויו Text in Italian is not being checked. Do you want to add it as a proofing language? Task 12 Fig 1 75 75 75 Fig 2 Fig 3j Add Figures 1 to 3 each shows a top view and a front view of models. Make use of the lineated paper for isometric projection and take each block on the paper as being 10mm x 10mm. Use the indicated sizes and draw an isometric view of each of the three models Samsung Galaxy A04earrow_forward
- a) show that the empty set and sigletonset are convex set. 6) show that every sub space of linear space X is convex but the convers heed not be true. c) let Mand N be two convex set of a linear Space X and KEF Show that MUN is conevex and (ii) M-N is convex or hot A and is MSN or NSM show that MUN convex or not, 385arrow_forwardxp x+xarrow_forwardFor the given graph, determine the following. -3 12 УА 4 3 - -1 ° 1 2 3 x -1. -2- a. Determine for which values of a the lim f (x) exists but f is not continuous at x = a. a b. Determine for which values of a the function is continuous but not differentiable at x = a. aarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningAlgebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning

Algebra for College Students
Algebra
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning



Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning