Introduction to mathematical programming
Introduction to mathematical programming
4th Edition
ISBN: 9780534359645
Author: Jeffrey B. Goldberg
Publisher: Cengage Learning
bartleby

Concept explainers

Expert Solution & Answer
Book Icon
Chapter 4, Problem 1RP

Explanation of Solution

Optimal solutions:

Consider the following linear programing problem:

  Max Z=5x1+3x2+x3

Subject to the constraints:

  x1+x2+3x36

  5x1+3x2+6x315

  x1,x2,x0

Calculate the optimum solution for the above linear programming problem by using the simplex algorithm as follows:

  • The constraints are ≤ constraints, now it is necessary to convert it to an equality constraint by adding slack variables s1, s2 to the two constraints. The standard form of linear programming problem is as shown below:

  Max Z=5x1+3x2+x3+0s1+0s2

  x1+x2+3x3+s1=6

  5x1+3x2+6x3+s2=15

  x1,x2,x3,s1,s20

The initial simplex table is as follows:

  • Choose base variables by observing that which values form an identity matrix in the table. Here X4, X5 variable values form an identity matrix. Take the corresponding Cj values of X4, X5 as Cb values.

   Zj= CbXb  Zb= (0×6) + (0×15)  Zb= 0Z1= CbX1 Z1= (0×1)+(0×5) Z1= 0

  • Calculate the rest of variables and shown in the initial table:
 Cj 53100
BaseCbXbX1X2X3X4X5
X40611310
X501553601
Zj0000000
Zj-Cj 0-5-3-100
  • From the above simplex table, observe ZjCj values. -5 is the most negative number and therefore the negative entry is -5.
  • Calculate the ratio value by using the following formula.

Ratio=Right hand side value fo the constraintCoefficient of entering variable in the constraint

 Cj 53100 
BaseCbXbX1X2X3X4X5Ratio= Xb/ X1
X40611310(6/1)=6
X501553601(15/5)=3
Zj0000000 
Zj-Cj 0-5-3-100 

R215R2

R1R1R2

The resultant iteration table is as shown below:

 Cj 53100
BaseCbXbX1X2X3X4X5
X40300.41.81-0.2
X15310.61.200.2
Zj 1553601
Zj-Cj 1500501

Since, the last row Zj-Cj contains all positive entries, the solution is optimal. Therefore, the value decision variables and Max Z is,

x1= 5 x2= 0        x3= 0        Max Z = 5x1+3x2+x3 Max Z = (5×0)+(3×5)+(1×0)Max Z = 15

The optimal maximized Z value is 15.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
What are the major threats of using the internet? How do you use it? How do children use it? How canwe secure it? Provide four references with your answer. Two of the refernces can be from an article and the other two from websites.
Assume that a string of name & surname is saved in S. The alphabetical characters in S can be in lowercase and/or uppercase letters. Name and surname are assumed to be separated by a space character and the string ends with a full stop "." character. Write an assembly language program that will copy the name to NAME in lowercase and the surname to SNAME in uppercase letters. Assume that name and/or surname cannot exceed 20 characters. The program should be general and work with every possible string with name & surname. However, you can consider the data segment definition given below in your program. .DATA S DB 'Mahmoud Obaid." NAME DB 20 DUP(?) SNAME DB 20 DUP(?) Hint: Uppercase characters are ordered between 'A' (41H) and 'Z' (5AH) and lowercase characters are ordered between 'a' (61H) and 'z' (7AH) in the in the ASCII Code table. For lowercase letters, bit 5 (d5) of the ASCII code is 1 where for uppercase letters it is 0. For example, Letter 'h' Binary ASCII 01101000 68H 'H'…
What did you find most interesting or surprising about the scientist Lavoiser?

Chapter 4 Solutions

Introduction to mathematical programming

Ch. 4.5 - Prob. 1PCh. 4.5 - Prob. 2PCh. 4.5 - Prob. 3PCh. 4.5 - Prob. 4PCh. 4.5 - Prob. 5PCh. 4.5 - Prob. 6PCh. 4.5 - Prob. 7PCh. 4.6 - Prob. 1PCh. 4.6 - Prob. 2PCh. 4.6 - Prob. 3PCh. 4.6 - Prob. 4PCh. 4.7 - Prob. 1PCh. 4.7 - Prob. 2PCh. 4.7 - Prob. 3PCh. 4.7 - Prob. 4PCh. 4.7 - Prob. 5PCh. 4.7 - Prob. 6PCh. 4.7 - Prob. 7PCh. 4.7 - Prob. 8PCh. 4.7 - Prob. 9PCh. 4.8 - Prob. 1PCh. 4.8 - Prob. 2PCh. 4.8 - Prob. 3PCh. 4.8 - Prob. 4PCh. 4.8 - Prob. 5PCh. 4.8 - Prob. 6PCh. 4.10 - Prob. 1PCh. 4.10 - Prob. 2PCh. 4.10 - Prob. 3PCh. 4.10 - Prob. 4PCh. 4.10 - Prob. 5PCh. 4.11 - Prob. 1PCh. 4.11 - Prob. 2PCh. 4.11 - Prob. 3PCh. 4.11 - Prob. 4PCh. 4.11 - Prob. 5PCh. 4.11 - Prob. 6PCh. 4.12 - Prob. 1PCh. 4.12 - Prob. 2PCh. 4.12 - Prob. 3PCh. 4.12 - Prob. 4PCh. 4.12 - Prob. 5PCh. 4.12 - Prob. 6PCh. 4.13 - Prob. 2PCh. 4.14 - Prob. 1PCh. 4.14 - Prob. 2PCh. 4.14 - Prob. 3PCh. 4.14 - Prob. 4PCh. 4.14 - Prob. 5PCh. 4.14 - Prob. 6PCh. 4.14 - Prob. 7PCh. 4.16 - Prob. 1PCh. 4.16 - Prob. 2PCh. 4.16 - Prob. 3PCh. 4.16 - Prob. 5PCh. 4.16 - Prob. 7PCh. 4.16 - Prob. 8PCh. 4.16 - Prob. 9PCh. 4.16 - Prob. 10PCh. 4.16 - Prob. 11PCh. 4.16 - Prob. 12PCh. 4.16 - Prob. 13PCh. 4.16 - Prob. 14PCh. 4.17 - Prob. 1PCh. 4.17 - Prob. 2PCh. 4.17 - Prob. 3PCh. 4.17 - Prob. 4PCh. 4.17 - Prob. 5PCh. 4.17 - Prob. 7PCh. 4.17 - Prob. 8PCh. 4 - Prob. 1RPCh. 4 - Prob. 2RPCh. 4 - Prob. 3RPCh. 4 - Prob. 4RPCh. 4 - Prob. 5RPCh. 4 - Prob. 6RPCh. 4 - Prob. 7RPCh. 4 - Prob. 8RPCh. 4 - Prob. 9RPCh. 4 - Prob. 10RPCh. 4 - Prob. 12RPCh. 4 - Prob. 13RPCh. 4 - Prob. 14RPCh. 4 - Prob. 16RPCh. 4 - Prob. 17RPCh. 4 - Prob. 18RPCh. 4 - Prob. 19RPCh. 4 - Prob. 20RPCh. 4 - Prob. 21RPCh. 4 - Prob. 22RPCh. 4 - Prob. 23RPCh. 4 - Prob. 24RPCh. 4 - Prob. 26RPCh. 4 - Prob. 27RPCh. 4 - Prob. 28RP
Knowledge Booster
Background pattern image
Computer Science
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Operations Research : Applications and Algorithms
Computer Science
ISBN:9780534380588
Author:Wayne L. Winston
Publisher:Brooks Cole