
Concept explainers
Explanation of Solution
Optimal solution:
Consider the following linear programing problem:
Subject to the constraints:
Use
Subject to the constraints:
Add slack variables s1,s2 and artificial variable a1 to get:
-(min w′ = -5x1+x2+a1)
Subject to the constraints:
Two Phase Method:
Phase I linear programming problem is,
Subject to the constraints:
The initial simplex table is given below:
w′ | x1 | x2 | a1 | s1 | s2 | rhs | basic variable | |
R0 | 1 | 0 | 0 | -1 | 0 | 0 | 0 | w′=0 |
R1 | 0 | 2 | 1 | 1 | 0 | 0 | 6 | a1=6 |
R2 | 0 | 1 | 1 | 0 | 1 | 0 | 4 | s1=4 |
R3 | 0 | 1 | 2 | 0 | 0 | 1 | 5 | s2=5 |
- Since, the basic variable a1 value in R0 is non-zero, therefore, do the transformations
w′ | x1 | x2 | a1 | s1 | s2 | rhs | basic variable | |
R0 | 1 | 0 | 0 | -1 | 0 | 0 | 0 | w′=0 |
R1 | 0 | 2 | 1 | 1 | 0 | 0 | 6 | a1=6 |
R2 | 0 | 1 | 1 | 0 | 1 | 0 | 4 | s1=4 |
R3 | 0 | 1 | 2 | 0 | 0 | 1 | 5 | s2=5 |
Since the highest positive entry 2 in R0 corresponds to x1, x1 enters the basis.
w′ | x1 | x2 | a1 | s1 | s2 | rhs | ratio | |
R0 | 1 | 2 | 1 | 0 | 0 | 0 | 6 | - |
R1 | 0 | 2 | 1 | 1 | 0 | 0 | 6 | 3* |
R2 | 0 | 1 | 1 | 0 | 1 | 0 | 4 | 4 |
R3 | 1 | 2 | 0 | 0 | 0 | 1 | 5 | 5 |
Apply the simplex method further:
w′ | x1 | x2 | a1 | s1 | s2 | rhs | basic variable | |
R0 | 1 | 0 | 0 | -1 | 0 | 0 | 0 | w′=0 |
R1 | 0 | 1 | 0 | 0 | 6 | x1 = 3 | ||
R2 | 0 | 0 | 1 | 0 | 1 | s1=1 | ||
R3 | 0 | 0 | 0 | 1 | 2 | s2=2 |
- Optimally reached for phase 1. Proceed to phase 2 with the actual objective function

Want to see the full answer?
Check out a sample textbook solution
Chapter 4 Solutions
Introduction to mathematical programming
- 3. Consider the polynomial equation 6-iz+7z² -iz³ +z = 0 for which the roots are 3i, -2i, -i, and i. (a) Verify the relations between this roots and the coefficients of the polynomial. (b) Find the annulus region in which the roots lie.arrow_forward30.3. Find and classify the isolated singularities of the following func- tions: (a). 23+1 22(2-1) (b). ²e¹/, (c). sin 3z (d). COS 2arrow_forward3. Consider the polynomial equation 6-iz+7z2-iz³ +z = 0 for which the roots are 3i, -2i, -i, and i. (a) Verify the relations between this roots and the coefficients of the polynomial. (b) Find the annulus region in which the roots lie.arrow_forward
- Determine the set of odd primes p for which 23 is a quadratic residue.arrow_forwardPatterns in Floor Tiling A square floor is to be tiled with square tiles as shown. There are blue tiles on the main diagonals and red tiles everywhere else. In all cases, both blue and red tiles must be used. and the two diagonals must have a common blue tile at the center of the floor. If 81 blue tiles will be used, how many red tiles will be needed? For what numbers in place of 81 would this problem still be solvable? Find an expression in k giving the number of red tiles required in general.arrow_forwardSolve questionsarrow_forward
- Q/ Find and classify the singularities of the functions- = 52+3 (1-2) sin² Z a fcz) b f(z) = tanz Z © f(2)= [z (e²-1)]arrow_forwardThe managing director of a consulting group has the accompanying monthly data on total overhead costs and professional labor hours to bill to clients. Complete parts a through c Overhead Costs Billable Hours345000 3000385000 4000410000 5000462000 6000530000 7000545000 8000arrow_forwardUsing the accompanying Home Market Value data and associated regression line, Market ValueMarket Valueequals=$28,416plus+$37.066×Square Feet, compute the errors associated with each observation using the formula e Subscript ieiequals=Upper Y Subscript iYiminus−ModifyingAbove Upper Y with caret Subscript iYi and construct a frequency distribution and histogram. Square Feet Market Value1813 911001916 1043001842 934001814 909001836 1020002030 1085001731 877001852 960001793 893001665 884001852 1009001619 967001690 876002370 1139002373 1131001666 875002122 1161001619 946001729 863001667 871001522 833001484 798001589 814001600 871001484 825001483 787001522 877001703 942001485 820001468 881001519 882001518 885001483 765001522 844001668 909001587 810001782 912001483 812001519 1007001522 872001684 966001581 86200arrow_forward
- Patterns in Floor Tiling A square floor is to be tiled with square tiles as shown. There are blue tiles on the main diagonals and red tiles everywhere else. In all cases, both blue and red tiles must be used. and the two diagonals must have a common blue tile at the center of the floor. If 81 blue tiles will be used, how many red tiles will be needed?arrow_forwardAt a BBQ, you can choose to eat a burger, hotdog or pizza. you can choose to drink water, juice or pop. If you choose your meal at random, what is the probability that you will choose juice and a hot dog? What is the probability that you will not choose a burger and choose either water or pop?arrow_forwarda card is drawn from a standard deck of 52 cards. If a card is choosen at random, what is the probability that the card is a)heart b)a face card or c)a spade or 10arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
