Concept explainers
Interpretation:
The concentration of ions remaining in the solution after completion of the given reaction is to be calculated, assume volumes are additive.
Concept introduction:
The number of moles of a given compound that take part in the given reaction depends upon the concentration of the limiting reagent.
The reagent that is present in lesser amount in the given reaction is known as limiting reagent.
The conversion of volume from
The number of moles of compound in the given solution is calculated as:
Answer to Problem 127AP
Solution:
The concentration of
Explanation of Solution
Given information: The reaction of
The mass of
The volume of
The mass of
The volume of
The balanced chemical equation for the given reaction is,
The conversion of volume from
Hence, the conversion of the volume of
Similarly, the conversion of the volume of
The total volume of the final solution is calculated by adding the volume of
The number of moles of a compound in the given reaction is calculated by the formula,
Substitute the values of mass and molar mass of
Substitute the values of mass and molar mass of
The number of moles of hydroxide ions that take part in the given reaction is calculated by the formula,
Substitute the value of number of moles of
Hence, the number of moles of hydroxide ions are present in excess, and
The number of moles of hydroxide ions remaining in the solution after completion of reaction is,
The molarity of the ions present in the given solution is calculated by the formula,
Here,
Substitute the values of
Substitute the values of
Substitute the values of
The concentration of
Want to see more full solutions like this?
Chapter 4 Solutions
Chemistry
- Twenty-five mL of a 0.388 M solution of Na2SO4 is mixed with 35.3 mL of 0.229 M Na2SO4. What is the molarity of the resulting solution? Assume that the volumes are additive.arrow_forwardWhen 10. L of water is added to 3.0 L of 6.0 M H2SO4, what is the molarity of the resulting solution? Assume the volumes are additive.arrow_forwardA 1.345-g sample of a compound of barium and oxygen was dissolved in hydrochloric acid to give a solution of barium ion, which was then precipitated with an excess of potassium chromate to give 2.012 g of barium chromate, BaCrO4. What is the formula of the compound?arrow_forward
- Sodium chloride is used in intravenous solutions for medical applications. The NaCl concentration in such solutions must be accurately known and can be assessed by reacting the solution with an experimentally determined volume of AgNO3 solution of known concentration. The net ionic equation is Ag+(aq)+Cl(aq)AgCl(s) Suppose that a chemical technician uses 19.3 mL of 0.200-M AgNO3 to convert all the NaCl in a 25.0-mL sample of an intravenous solution to AgCl. Calculate the molarity of NaCl in the solution.arrow_forwardAn aqueous sample is known to contain either Mg2+ or Ba2+ ions. Treatment of the sample with Na2CO3 produces a precipitate, but treatment with ammonium sulfate does not. Use the solubility rules (see Table 4.1) to determine which cation is present.arrow_forwardYou mix 25.0 mL of 0.234-M FeCl3 solution with 42.5 mL of 0.453-M NaOH. Calculate the maximum mass, in grams, of Fe(OH)3 that will precipitate. Determine which reactant is in excess. Calculate the concentration of the excess reactant remaining in solution after the maximum mass of Fe(OH)3 has precipitated.arrow_forward
- Separate samples of a solution of an unknown soluble ionic compound are treated with KCl, Na2SO4, and NaOH. A precipitate forms only when Na2SO4 is added. Which cations could be present in the unknown soluble ionic compound?arrow_forwardCitric acid, which can be obtained from lemon juice, has the molecular formula C6H8O7. A 0.250-g sample of citric acid dissolved in 25.0 mL of water requires 37.2 mL of 0.105 M NaOH for complete neutralization. What number of acidic hydrogens per molecule does citric acid have?arrow_forwardMany plants are poisonous because their stems and leaves contain oxalic acid H2C2O4, or sodium oxalate, Na2C2O4. When ingested, these substances cause swelling of the respiratory tract and suffocation. A standard analysis for determining the amount of oxalate ion, C2O42 in a sample is to precipitate this species as calcium oxalate, which is insoluble in water. Write die net ionic equation for the reaction between sodium oxalate and calcium chloride. CaCl2, in aqueous solution.arrow_forward
- A 8.50 g sample of KCl is dissolved in 66.0 mL of water. The resulting solution is then added to 72.0 mL of a 0.280 M CaCl2(aq) solution. Assuming that the volumes are additive, calculate the concentrations of each ion present in the final solution.arrow_forwardA 25.0-mL sample of sodium sulfate solution was analyzed by adding an excess of barium chloride solution to produce barium sulfate crystals, which were filtered from the solution. Na2SO4(aq)+BaCl2(aq)2NaCl(aq)+BaSO4(s) If 5.719 g of barium sulfate was obtained, what was the molarity of the original Na2SO4 solution?arrow_forwardOne method for determining the purity of aspirin (C9H8O4) is to hydrolyze it with NaOH solution and then to titrate the remaining NaOH. The reaction of aspirin with NaOH is as follows: A sample of aspirin with a mass of 1.427 g was boiled in 50.00 mL of 0.500 M NaOH. After the solution was cooled, it took 31.92 mL of 0.289 M HCl to titrate the excess NaOH. Calculate the purity of the aspirin. What indicator should be used for this titration? Why?arrow_forward
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning