Interpretation:
The aqueous solutions of three compounds, as shown in the diagram, are to be identified as nonelectrolyte, weak electrolyte, or strong electrolyte.
Concept introduction:
The process by which a compound produces ions in a solution upon dissolution is called dissociation.
An electrolyte is a substance that dissociates to produce ions when dissolved in water. Due to the formation of ions, electrolytes can conduct electricity.
A nonelectrolyte isa substance that does not dissociate to produce ions. Hence, they cannot conduct electricity.
The two types of electrolytes are strong and weak. The strong electrolytes completely dissociate into their constituent ions upon dissolution. Thus, they are good conductors of electricity.
The weak electrolytes do not dissociate completely upon dissolution. The solution of a weak electrolyte contains very few ionsand unionized molecules predominantly. Hence, conducts less electricity.
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Chemistry
- Twenty-five mL of a 0.388 M solution of Na2SO4 is mixed with 35.3 mL of 0.229 M Na2SO4. What is the molarity of the resulting solution? Assume that the volumes are additive.arrow_forwardWhat is the difference between a solute and a solvent?arrow_forwardCharacterize strong electrolytes versus weak electrolytes versus nonelectrolytes. Give examples of each. How do you experimentally determine whether a soluble substance is a strong electrolyte, weak electrolyte, or nonelectrolyte?arrow_forward
- Sodium chloride is used in intravenous solutions for medical applications. The NaCl concentration in such solutions must be accurately known and can be assessed by reacting the solution with an experimentally determined volume of AgNO3 solution of known concentration. The net ionic equation is Ag+(aq)+Cl(aq)AgCl(s) Suppose that a chemical technician uses 19.3 mL of 0.200-M AgNO3 to convert all the NaCl in a 25.0-mL sample of an intravenous solution to AgCl. Calculate the molarity of NaCl in the solution.arrow_forwardIf aqueous solutions of potassium sulfide and iron(III) chloride are mixed, a precipitate is formed. Write the complete and net ionic equations for this reaction, and name the precipitate.arrow_forwardA 25.0-mL sample of sodium sulfate solution was analyzed by adding an excess of barium chloride solution to produce barium sulfate crystals, which were filtered from the solution. Na2SO4(aq)+BaCl2(aq)2NaCl(aq)+BaSO4(s) If 5.719 g of barium sulfate was obtained, what was the molarity of the original Na2SO4 solution?arrow_forward
- Bone was dissolved in hydrochloric acid, giving 50.0 mL of solution containing calcium chloride, CaCL2. To precipitate the calcium ion from the resulting solution, an excess of potassium oxalate was added. The precipitate of calcium oxalate, CaC2O4, weighed 1.437 g. What was the molarity of CaCl2 in the solution?arrow_forwardA 1.345-g sample of a compound of barium and oxygen was dissolved in hydrochloric acid to give a solution of barium ion, which was then precipitated with an excess of potassium chromate to give 2.012 g of barium chromate, BaCrO4. What is the formula of the compound?arrow_forwardIn each of the following cases, does a precipitation reaction occur when solutions of the two water-soluble reactants are mixed? Give the formula of any precipitate that forms, and write a balanced chemical equation for the precipitation reactions that occur. (a) sodium carbonate and copper(11) chloride (b) potassium carbonate and sodium nitrate (c) nickel(11) chloride and potassium hydroxidearrow_forward
- If aqueous solutions of potassium carbonate and copper(II) nitrate are mixed, a precipitate is formed. Write the complete and net ionic equations for this reaction, and name the precipitate.arrow_forwardElemental bromine is the source of bromine compounds. The element is produced from certain brine solutions that occur naturally. These brines are essentially solutions of calcium bromide that, when treated with chlorine gas, yield bromine in a displacement reaction. What are the molecular equation and net ionic equation for the reaction? A solution containing 40.0 g of calcium bromide requires 14.2 g of chlorine to react completely with it, and 22.2 g of calcium chloride is produced in addition to whatever bromine is obtained. How many grams of calcium bromide are required to produce 10.0 pounds of bromine?arrow_forwardNickel(II) sulfate solution reacts with sodium hydroxide solution to produce a precipitate of nickel(II) hydroxide and a solution of sodium sulfate. Write the molecular equation for this reaction. Then write the corresponding net ionic equation.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning