Differential Equations: An Introduction to Modern Methods and Applications
Differential Equations: An Introduction to Modern Methods and Applications
3rd Edition
ISBN: 9781118531778
Author: James R. Brannan, William E. Boyce
Publisher: WILEY
bartleby

Videos

Textbook Question
Book Icon
Chapter 3.P2, Problem 1P

If x j ( t ) represents the amount of drug (milligrams) in compartment j , j = 1 , 2 , use Figure 3.P.3 and the mass balance law

d x j d t = compartment j input rate compartment j output rate , (i)

to show that x 1 and x 2 satisfy the system

d x 1 d t = ( K + k 21 ) x 1 + k 21 x 2 + d ( t )

d x 2 d t = k 21 x 1 k 12 x 2 . (ii)

Chapter 3.P2, Problem 1P, If  represents the amount of drug (milligrams) in compartment , , use Figure 3.P.3 and the mass

Expert Solution & Answer
Check Mark
To determine

To prove: x1 and x2 satisfy the system dx1dt=(K+k21)x1+k12x2+d(t), dx2dt=k21x1k12x2 where xj(t) represents the amount of drug (milligrams) in compartment j,j=1,2, by using the figure:

Differential Equations: An Introduction to Modern Methods and Applications, Chapter 3.P2, Problem 1P , additional homework tip  1

and the mass balance law dxjdt= compartment j input rate compartment j output rate.

Explanation of Solution

Given information:

xj(t) represents the amount of drug (milligrams) in compartment j,j=1,2, by using the figure:

Differential Equations: An Introduction to Modern Methods and Applications, Chapter 3.P2, Problem 1P , additional homework tip  2

Formula used:

Mass balance law dxjdt= compartment j input rate compartment j output rate.

Proof:

Let the rate constant k21 is the fraction per unit time of the drug in the blood transferred to the brain, and k12 is the fraction per unit time of the drug in the brain transferred to the blood.

Therefore, the input rate of the compartment 1 with blood is given by,

compartment 1 input rate =d(t)+x2k12

As K is the rate at which drug is removed from the blood,

Therefore, the output rate of the drug from the compartment 1 is given as,

compartment 1 output rate =Kx1+x1k21.

By using mass balance law,

dx1dt= compartment 1 input rate compartment 1 output rate.

dx1dt=d(t)+x2k12(Kx1+x1k21)

dx1dt=(K+k21)x1+x2k12+d(t)

From the given figure, the input rate of the compartment 2 with blood is given by,

compartment 2 input rate =k21x1

Also, the output rate of the drug from the compartment 2 is given as,

compartment 2 output rate =k12x2.

By using mass balance law,

dx2dt= compartment 2 input rate compartment 2 output rate.

dx2dt=k21x1k12x2.

dx2dt=(K+k21)x1+x2k12+d(t).

Therefore, x1 and x2 satisfy the system dx1dt=(K+k21)x1+k12x2+d(t), dx2dt=k21x1k12x2.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 3 Solutions

Differential Equations: An Introduction to Modern Methods and Applications

Ch. 3.1 - Solving Linear Systems. In each of Problems 1...Ch. 3.1 - Solving Linear Systems. In each of Problems ...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems ...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems ...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems ...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems ...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems ...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems ...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems ...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems ...Ch. 3.1 - In each of Problems through : Find the...Ch. 3.1 - In each of Problems through : Find the...Ch. 3.1 - In each of Problems 33 through 36: Find the...Ch. 3.1 - In each of Problems through : Find the...Ch. 3.1 - If , derive the result in Eq. for . …...Ch. 3.1 - Show that =0 is an eigenvalue of the matrix A if...Ch. 3.2 - Writing Systems in Matrix Form. In each of...Ch. 3.2 - Writing Systems in Matrix Form. In each of...Ch. 3.2 - Writing Systems in Matrix Form. In each of...Ch. 3.2 - Writing Systems in Matrix Form. In each of...Ch. 3.2 - Writing Systems in Matrix Form. In each of...Ch. 3.2 - Writing Systems in Matrix Form. In each of...Ch. 3.2 - Writing Systems in Matrix Form. In each of...Ch. 3.2 - Writing Systems in Matrix Form. In each of...Ch. 3.2 - Show that the functions and are solutions of...Ch. 3.2 - (a) Show that the functions x(t)=et(2cos2tsin2t)...Ch. 3.2 - Show that is solution of the...Ch. 3.2 - (a) Show that x=et(2t1t1)+(6t+22t1) issolution of...Ch. 3.2 - Find the equilibrium solution, or critical point,...Ch. 3.2 - Prob. 14PCh. 3.2 - In each of Problems through : Find the...Ch. 3.2 - In each of Problems through : Find the...Ch. 3.2 - In each of Problems 15 through 20: (a) Find the...Ch. 3.2 - In each of Problems 15 through 20: (a) Find the...Ch. 3.2 - In each of Problems 15 through 20: (a) Find the...Ch. 3.2 - In each of Problems through : Find the...Ch. 3.2 - Second Order Differential Equations. In Problems...Ch. 3.2 - Second Order Differential Equations. In Problems...Ch. 3.2 - Second Order Differential Equations. In Problems...Ch. 3.2 - Second Order Differential Equations. In Problems...Ch. 3.2 - In each of Problems 25 and 26, transform the given...Ch. 3.2 - In each of Problems 25 and 26, transform the given...Ch. 3.2 - Applications. Electric Circuits. The theory of...Ch. 3.2 - Applications. Electric Circuits. The theory of...Ch. 3.2 - Applications. Electric Circuits. The theory of...Ch. 3.2 - Mixing Problems. Each of the tank shown in...Ch. 3.2 - Consider two interconnected tanks similar to those...Ch. 3.3 - General Solutions of Systems. In each of problems...Ch. 3.3 - General Solutions of Systems. In each of problems...Ch. 3.3 - General Solutions of Systems. In each of problems...Ch. 3.3 - General Solutions of Systems. In each of problems...Ch. 3.3 - General Solutions of Systems. In each of problems...Ch. 3.3 - General Solutions of Systems. In each of problems...Ch. 3.3 - General Solutions of Systems. In each of problems...Ch. 3.3 - General Solutions of Systems. In each of problems...Ch. 3.3 - General Solutions of Systems. In each of problems...Ch. 3.3 - General Solutions of Systems. In each of problems...Ch. 3.3 - General Solutions of Systems. In each of problems...Ch. 3.3 - General Solutions of Systems. In each of problems...Ch. 3.3 - In each of problems 13 through 16, solve the given...Ch. 3.3 - In each of problems 13 through 16, solve the given...Ch. 3.3 - In each of problems 13 through 16, solve the given...Ch. 3.3 - In each of problems 13 through 16, solve the given...Ch. 3.3 - Phase Portraits and Component Plots. In each of...Ch. 3.3 - Phase Portraits and Component Plots. In each of...Ch. 3.3 - Phase Portraits and Component Plots. In each of...Ch. 3.3 - Phase Portraits and Component Plots. In each of...Ch. 3.3 - Phase Portraits and Component Plots. In each of...Ch. 3.3 - Phase Portraits and Component Plots. In each of...Ch. 3.3 - Phase Portraits and Component Plots. In each of...Ch. 3.3 - Phase Portraits and Component Plots. In each of...Ch. 3.3 - Second order Equations. For Problems through...Ch. 3.3 - Second order Equations. For Problems through...Ch. 3.3 - Second order Equations. For Problems through...Ch. 3.3 - Second order Equations. For Problems through...Ch. 3.3 - Second order Equations. For Problems through...Ch. 3.3 - Second order Equations. For Problems 25 through...Ch. 3.3 - Obtaining exact, or approximate, expressions for...Ch. 3.3 - Electric Circuits. Problem 32 and 33 are concerned...Ch. 3.3 - Electric Circuits. Problem and are concerned...Ch. 3.3 - Dependence on a Parameter. Consider the system...Ch. 3.4 - General Solutions of Systems. In each of Problems...Ch. 3.4 - General Solutions of Systems. In each of Problems ...Ch. 3.4 - General Solutions of Systems. In each of Problems...Ch. 3.4 - General Solutions of Systems. In each of Problems ...Ch. 3.4 - General Solutions of Systems. In each of Problems...Ch. 3.4 - General Solutions of Systems. In each of Problems ...Ch. 3.4 - In each of Problems through, find the solution of...Ch. 3.4 - In each of Problems through, find the solution of...Ch. 3.4 - In each of Problems 7 through 10, find the...Ch. 3.4 - In each of Problems through, find the solution of...Ch. 3.4 - Phase Portraits and component Plots. In each of...Ch. 3.4 - Phase Portraits and component Plots. In each of...Ch. 3.4 - Dependence on a Parameter. In each of Problems ...Ch. 3.4 - Dependence on a Parameter. In each of Problems ...Ch. 3.4 - Dependence on a Parameter. In each of Problems ...Ch. 3.4 - Dependence on a Parameter. In each of Problems ...Ch. 3.4 - Dependence on a Parameter. In each of Problems ...Ch. 3.4 - Dependence on a Parameter. In each of Problems 13...Ch. 3.4 - Dependence on a Parameter. In each of Problems 13...Ch. 3.4 - Dependence on a Parameter. In each of Problems 13...Ch. 3.4 - Applications. Consider the electric circuit shown...Ch. 3.4 - Applications. The electric circuit shown in...Ch. 3.4 - Applications. In this problem, we indicate how to...Ch. 3.5 - General Solution and Phase Portraits. In each of...Ch. 3.5 - General Solutions and Phase Portraits. In each of...Ch. 3.5 - General Solutions and Phase Portraits. In each of...Ch. 3.5 - General Solutions and Phase Portraits. In each of...Ch. 3.5 - General Solutions and Phase Portraits. In each of...Ch. 3.5 - General Solutions and Phase Portraits. In each of...Ch. 3.5 - In each of Problems 7 through , find the solution...Ch. 3.5 - In each of Problems 7through 12, find the solution...Ch. 3.5 - In each of Problems 7 through , find the solution...Ch. 3.5 - In each of Problems 7 through , find the solution...Ch. 3.5 - In each of Problems 7 through , find the solution...Ch. 3.5 - In each of Problems 7 through , find the solution...Ch. 3.5 - Consider again the electric circuit in Problem 22...Ch. 3.5 - Trace Determinant Plane. Show that the solution of...Ch. 3.5 - Consider the linear system , where and are real...Ch. 3.5 - Continuing Problem 15, Show that the critical...Ch. 3.6 - For each of the systems in Problem through : Find...Ch. 3.6 - For each of the systems in Problem through : Find...Ch. 3.6 - For each of the systems in Problem 1 through 6: a)...Ch. 3.6 - For each of the systems in Problem through : Find...Ch. 3.6 - For each of the systems in Problem through : Find...Ch. 3.6 - For each of the systems in Problem 1 through 6: a)...Ch. 3.6 - For each of the systems in Problem 7 through 12:...Ch. 3.6 - For each of the systems in Problem through : Find...Ch. 3.6 - For each of the systems in Problem through : Find...Ch. 3.6 - For each of the systems in Problem through : Find...Ch. 3.6 - For each of the systems in Problem through : Find...Ch. 3.6 - For each of the systems in Problem through : Find...Ch. 3.6 - For each of the systems in Problem through : Find...Ch. 3.6 - For each of the systems in Problem 13 through 20:...Ch. 3.6 - For each of the systems in Problem through : Find...Ch. 3.6 - For each of the systems in Problem 13 through 20:...Ch. 3.6 - For each of the systems in Problem through : Find...Ch. 3.6 - For each of the systems in Problem through : Find...Ch. 3.6 - For each of the systems in Problem through : Find...Ch. 3.6 - For each of the systems in Problem 13 through 20:...Ch. 3.6 - Consider the system in Example . Draw a component...Ch. 3.6 - In this problem we indicate how to find the...Ch. 3.6 - Prob. 23PCh. 3.6 - An asymptotically stable limit cycle is a closed...Ch. 3.6 - A model for the population, x and y of two...Ch. 3.P1 - Assume that all the rate constants in , are...Ch. 3.P1 - Estimating Eigenvalues and Eigenvectors of from...Ch. 3.P1 - Computing the Entries of from Its Eigenvalues and...Ch. 3.P1 - Given estimates Kij of the entries of K and...Ch. 3.P1 - Table 3.P.1 lists drug concentration measurements...Ch. 3.P2 - If represents the amount of drug (milligrams) in...Ch. 3.P2 - Prob. 2PCh. 3.P2 - Assuming that and , use the parameter values...Ch. 3.P2 - If a dosage is missed, explain through the...Ch. 3.P2 - Suppose the drug can be packaged in a...

Additional Math Textbook Solutions

Find more solutions based on key concepts
The equivalent expression of x(y+z) by using the commutative property.

Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)

Testing Hypotheses. In Exercises 13-24, assume that a simple random sample has been selected and test the given...

Elementary Statistics Using The Ti-83/84 Plus Calculator, Books A La Carte Edition (5th Edition)

Read about basic ideas of statistics in Common Core Standards for grades 3-5, and discuss why students at these...

A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)

Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Finite Math: Markov Chain Example - The Gambler's Ruin; Author: Brandon Foltz;https://www.youtube.com/watch?v=afIhgiHVnj0;License: Standard YouTube License, CC-BY
Introduction: MARKOV PROCESS And MARKOV CHAINS // Short Lecture // Linear Algebra; Author: AfterMath;https://www.youtube.com/watch?v=qK-PUTuUSpw;License: Standard Youtube License
Stochastic process and Markov Chain Model | Transition Probability Matrix (TPM); Author: Dr. Harish Garg;https://www.youtube.com/watch?v=sb4jo4P4ZLI;License: Standard YouTube License, CC-BY