Phase Portraits and component Plots. In each of Problems
(a) Find the eigenvalues of the given system.
(b) Choose an initial point (other than the origin) and sketch the corresponding trajectory in the
(c) For your trajectory in part (b), sketch the graphs of
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Differential Equations: An Introduction to Modern Methods and Applications
Additional Math Textbook Solutions
Probability and Statistics for Engineers and Scientists
Introductory Mathematics for Engineering Applications
Calculus for Business, Economics, Life Sciences, and Social Sciences (13th Edition)
Calculus Volume 1
Mathematics All Around (6th Edition)
Thinking Mathematically (7th Edition)
- In each of Problems 1 through 20: (a) Determine all critical points of the given system of equations. (b) Find the corresponding linear system near each critical point. (c) Find the eigenvalues of each linear system. What conclusions can you then draw about the nonlinear system? (d) Draw a phase portrait of the nonlinear system to confirm your conclusions, or to extend them in those cases where the linear system does not provide definite information about the nonlinear system. (e) Draw a sketch of, or describe in words, the basin of attraction of each asymptotically stable critical point. 1. dx/dt = -2x+y, dy/dt = x² - yarrow_forwardMatch each linear system with one of the phase plane direction fields. (The blue lines are the arrow shafts, and the black dots are the arrow tips.) A 1. = C 2.'= 1-[- = - [6 9 DC 3.' = BC 4.' = 8 2 1 -5 -1 5 -1 - x -5 -9 x = C A x1 B D Note: To solve this problem, you only need to compute eigenvalues. In fact, it is enough to just compute whether the eigenvalues are real or complex and positive or negative.arrow_forwardThis is the fourth part of a four-part problem. If the given solutions ÿ₁ (t) = - [²2²], 2(0)-[¹7¹]. form a fundamental set (i.e., linearly independent set) of solutions for the initial value problem 21-² -21-2 y' = - [22 12t¹+2t 27 2t ¹-2t 2 [²], 2t | Ü‚ ÿ(5) — [34], t = t> 0, impose the given initial condition and find the unique solution to the initial value problem for t> 0. If the given solutions do not form a fundamental set, enter NONE in all of the answer blanks y(t) = (arrow_forward
- Please helparrow_forwardIn the following system Problem, categorize the eigenvalues and eigenvectors of the coefficient matrix A and sketch the phase portrait of the system by hand. Then use a computer system or graphing calculator to check your answer. x'1 = 6x1 - 7x2, x'2 = x1 - 2x2arrow_forwardPart Barrow_forward
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education