Phase Portraits and component Plots. In each of Problems
(a) Find the eigenvalues of the given system.
(b) Choose an initial point (other than the origin) and sketch the corresponding trajectory in the
(c) For your trajectory in part (b), sketch the graphs of
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Differential Equations: An Introduction to Modern Methods and Applications
Additional Math Textbook Solutions
Thinking Mathematically (6th Edition)
Mathematics with Applications In the Management, Natural and Social Sciences (11th Edition)
Mathematics All Around (6th Edition)
The Heart of Mathematics: An Invitation to Effective Thinking
Finite Mathematics & Its Applications (12th Edition)
Finite Mathematics for Business, Economics, Life Sciences and Social Sciences
- In each of Problems 1 through 20: (a) Determine all critical points of the given system of equations. (b) Find the corresponding linear system near each critical point. (c) Find the eigenvalues of each linear system. What conclusions can you then draw about the nonlinear system? (d) Draw a phase portrait of the nonlinear system to confirm your conclusions, or to extend them in those cases where the linear system does not provide definite information about the nonlinear system. (e) Draw a sketch of, or describe in words, the basin of attraction of each asymptotically stable critical point. 1. dx/dt = -2x+y, dy/dt = x² - yarrow_forward3. Suppose Juliet isn’t happy with how the cat’s presence affects her and finds a suitable alternate home for her cat. Romeo on the other hand starts reading self-help books and becomes more in tune with his feelings. The new system is dx/dt=−0.2y+ 0.1 dy/dt= 0.8x. (a) Find the eigenvalues of the system. What do their values tell you about the long-term fate of this relationship? (b) Use the eigenvalues to draw a sketch of the phase plane, and check it with PPLANE. (c) Describe what is happening in the phase plane in terms of emotions.arrow_forwardThis is the fourth part of a four-part problem. If the given solutions ÿ₁ (t) = - [²2²], 2(0)-[¹7¹]. form a fundamental set (i.e., linearly independent set) of solutions for the initial value problem 21-² -21-2 y' = - [22 12t¹+2t 27 2t ¹-2t 2 [²], 2t | Ü‚ ÿ(5) — [34], t = t> 0, impose the given initial condition and find the unique solution to the initial value problem for t> 0. If the given solutions do not form a fundamental set, enter NONE in all of the answer blanks y(t) = (arrow_forward
- Please helparrow_forwardIn the following system Problem, categorize the eigenvalues and eigenvectors of the coefficient matrix A and sketch the phase portrait of the system by hand. Then use a computer system or graphing calculator to check your answer. x'1 = 6x1 - 7x2, x'2 = x1 - 2x2arrow_forwardNonearrow_forward
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education