Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 38, Problem 52P
To determine
The fraction of incident light transmitted.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two polarizing sheets are placed together with their transmission axes crossed so that no light is transmitted. A third sheet is inserted between them with its transmission axis at an angle of 45 degree with respect to each of the other transmission axes. Find the fraction of incident unpolarized light intensity transmitted by the three-sheet combination. (Assume each polarizing sheet is ideal.)
Initially unpolarized light is sent along the z-axis into a system of three polarizing sheets placed perpendicular to the z-axis and whose polarizing angles with respect to y-axis are 22º (first sheet), 89º (second sheet), and 56º (the last sheet).
What percentage of the initial light intensity is transmitted by the system?
Express your answer as a percentage, to at least one digit after the decimal.
In Figure (a) below, unpolarized light is sent into a system of three polarizing sheets.The angles 0₁, 02, and 83 of the polarizing
directions are measured counterclockwise from the positive direction of the y axis (they are not drawn to scale). Angles 0₁ and 83 are
fixed, but angle 82 can be varied. Figure (b) gives the intensity of the light emerging from sheet 3 as a function of 0₂. (The scale of the
intensity axis is not indicated.) What percentage of the light's initial intensity is transmitted by the three-sheet system when 82 = 92⁰?
Number
Units
60°
(b)
120°
180-
Chapter 38 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 38.2 - Suppose the slit width in Figure 37.4 is made half...Ch. 38.2 - Prob. 38.2QQCh. 38.3 - Cats eyes have pupils that can be modeled as...Ch. 38.3 - Suppose you are observing a binary star with a...Ch. 38.4 - Ultraviolet light of wavelength 350 nm is incident...Ch. 38.6 - A polarizer for microwaves can be made as a grid...Ch. 38.6 - Prob. 38.7QQCh. 38 - Prob. 1OQCh. 38 - Prob. 2OQCh. 38 - Prob. 3OQ
Ch. 38 - Prob. 4OQCh. 38 - Prob. 5OQCh. 38 - Prob. 6OQCh. 38 - Prob. 7OQCh. 38 - Prob. 8OQCh. 38 - Prob. 9OQCh. 38 - Prob. 10OQCh. 38 - Prob. 11OQCh. 38 - Prob. 12OQCh. 38 - Prob. 1CQCh. 38 - Prob. 2CQCh. 38 - Prob. 3CQCh. 38 - Prob. 4CQCh. 38 - Prob. 5CQCh. 38 - Prob. 6CQCh. 38 - Prob. 7CQCh. 38 - Prob. 8CQCh. 38 - Prob. 9CQCh. 38 - Prob. 10CQCh. 38 - Prob. 11CQCh. 38 - Prob. 12CQCh. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - Coherent light of wavelength 501.5 nm is sent...Ch. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - What is the approximate size of the smallest...Ch. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Consider an array of parallel wires with uniform...Ch. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - A grating with 250 grooves/mm is used with an...Ch. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Light from an argon laser strikes a diffraction...Ch. 38 - Show that whenever white light is passed through a...Ch. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46PCh. 38 - Prob. 47PCh. 38 - Prob. 48PCh. 38 - Prob. 49PCh. 38 - Prob. 50PCh. 38 - Prob. 51PCh. 38 - Prob. 52PCh. 38 - Prob. 53APCh. 38 - Prob. 54APCh. 38 - Prob. 55APCh. 38 - Prob. 56APCh. 38 - Prob. 57APCh. 38 - Prob. 58APCh. 38 - Prob. 59APCh. 38 - Prob. 60APCh. 38 - Prob. 61APCh. 38 - Prob. 62APCh. 38 - Prob. 63APCh. 38 - Prob. 64APCh. 38 - Prob. 65APCh. 38 - Prob. 66APCh. 38 - Prob. 67APCh. 38 - Prob. 68APCh. 38 - Prob. 69APCh. 38 - Prob. 70APCh. 38 - Prob. 71APCh. 38 - Prob. 72APCh. 38 - Prob. 73APCh. 38 - Light of wavelength 632.8 nm illuminates a single...Ch. 38 - Prob. 75CPCh. 38 - Prob. 76CPCh. 38 - Prob. 77CPCh. 38 - Prob. 78CPCh. 38 - Prob. 79CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Three polarizing sheets are placed together such that the transmission axis of the second sheet is oriented at 25.0° to the axis of the first, whereas the transmission axis of the third sheet is oriented at 40.0° (in the same sense) to the axis of the first. What fraction of an intensity of an incident unpolarized beam is transmitted by the combination?arrow_forwardA linearly polarized microwave of wavelength 1.50 cm is directed along the positive x axis. The electric field vector has a maximum value of 175 V/m and vibrates in the xy plane. Assuming the magnetic field component of the wave can be written in the form B = Bmax sin (kx t), give values for (a) Bmax, (b) k, and (c) . (d) Determine in which plane the magnetic field vector vibrates. (e) Calculate the average value of the Poynting vector for this wave. (f) If this wave were directed at normal incidence onto a perfectly reflecting sheet, what radiation pressure would it exert? (g) What acceleration would be imparted to a 500-g sheet (perfectly reflecting and at normal incidence) with dimensions of 1.00 m 0.750 m?arrow_forwardThe transmission axes of two polarizing sheets are initially parallel. Through what angle must the second sheet be rotated so that the intensity of the transmitted light is 12.5 % of the intensity of the incident unpolarized light?arrow_forward
- In Figure (a) below, unpolarized light is sent into a system of two polarizing sheets. The angles 8₁ and 82 of the polarizing directions of the sheets are measured counterclockwise from the positive direction of the y axis (they are not drawn to scale in the figure). Angle 8₁ is fixed but angle 82 can be varied. Figure (b) gives the intensity of the light emerging from sheet 2 as a function of 8₂2. (The scale of the intensity axis is not indicated.) What percentage of the light's initial intensity is transmitted by the two-sheet system when 82 = 100°? (a) 0 909 89 (b) 180°arrow_forwardIn Figure (a) below, unpolarized light is sent into a system of three polarizing sheets.The angles 8₁, 82, and 83 of the polarizing directions are measured counterclockwise from the positive direction of the y axis (they are not drawn to scale). Angles 8₁ and 83 are fixed, but angle 82 can be varied. Figure (b) gives the intensity of the light emerging from sheet 3 as a function of 82. (The scale of the intensity axis is not indicated.) What percentage of the light's initial intensity is transmitted by the three-sheet system when 82 = 92°? 60° (a) (b) 120° 180-2arrow_forwardA beam of polarized light is sent into a system of two polarizing sheets. Relative to the polarization direction of that incident light, the polarizing directions of the sheets are at angles u for the first sheet and 90° for the second sheet. If 0.10 of the incident intensity is transmitted by the two sheets, what is u?arrow_forward
- Initially unpolarized light is sent along the z-axis into a system of three polarizing sheets placed perpendicular to the z-axis and whose polarizing angles with respect to y-axis are 22º (first sheet), 89º (second sheet), and 56º (the last sheet). What percentage of the initial light intensity is transmitted by the system? Express your answer as a percentage, to at least one digit after the decimal.arrow_forwardA beam of unpolarized light shines on a stack of five ideal polarizers, set up so that the angles between the polarization axes of pairs of adjacent polarizers are all equal. The intensity of the transmitted beam is reduced from the intensity of the initial beam by a factor of ?=0.251. Find the angle ? between the axes of each pair of adjacent polarizers.arrow_forwardA beam of unpolarized light shines on a stack of five ideal polarizers, set up so that the angles between the polarization axes of pairs of adjacent polarizers are all equal. The intensity of the transmitted beam is reduced from the intensity of the initial beam by a factor of ?=0.261. Find the angle ? between the axes of each pair of adjacent polarizers.arrow_forward
- Plane-polarized light is incident on a single polarizing disk, with the direction of E0 parallel to the direction of the transmission axis. Through what angle should the disk be rotated so that the intensity in the transmitted beam is reduced by a factor of each of the following?(a) 2.55 (b) 4.05 (c) 6.4arrow_forwardPolarized light is incident on 7 polarizing sheets. the axis of the first polarized sheet makes an agle theta with the plane of polarization. each subsequent sheet has an axis that is rotated by an angle theta from that of adjacent sheets. find theta if 91% of the incident intensity is transmitted by the sheets.arrow_forwardAn unpolarized beam of light is incident on a stack of ideal polarizing filters. The axis of the first filter is perpendicular to the axis of the last filter in the stack. Find the fraction by which the transmitted beam’s intensity is reduced in the three following cases. (a) Three filters are in the stack, each with its transmission axis at 45.0° relative to the preceding filter. (b) Four filters are in the stack, each with its transmission axis at 30.0° relative to the preceding filter. (c) Seven filters are in the stack, each with its transmission axis at 15.0°relative to the preceding filter. (d) Comment on comparing the answers to parts (a), (b), and (c).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY