Physics for Scientists and Engineers with Modern Physics, Technology Update
Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 38, Problem 69AP

(a)

To determine

To show: The dispersion is given by dλdy=L2dm(L2+y2)32 .

(a)

Expert Solution
Check Mark

Answer to Problem 69AP

The dispersion is, dλdy=L2dm(L2+y2)32 .

Explanation of Solution

Formula to calculate the angles of bright beams diffracted from the grafting is,

dsinθ=mλ (1)

Here,

d is the spacing between adjacent slits.

m is order number of intensity maximum.

λ is wavelength of light.

θ is the angle by which ray is diffracted.

Write the expression for sine of angle θ .

sinθ=yL2+y2

Substitute yL2+y2 for sinθ in equation (1)

dyL2+y2=mλ

Differentiate the above equation with respect to y .

ddy(dyL2+y2)=ddy(mλ)

Apply product rule of differentiation to differentiate above equation.

d(L2+y2)12+(d)y(12)(L2+y2)32(0+2y)=mdλdyd(L2+y2)12(d)y2(L2+y2)32=mdλdy(d)(L2+y2)(d)y2(L2+y2)32=mdλdydλdy=L2dm(L2+y2)32

Conclusion:

Therefore, the dispersion is dλdy=L2dm(L2+y2)32 .

(b)

To determine

The dispersion in first order.

(b)

Expert Solution
Check Mark

Answer to Problem 69AP

The dispersion in first order is 3.77nm/cm .

Explanation of Solution

Given info: The mean wavelength of light is 550nm , grating is 8000ruling/cm , and screen is placed at a distance of 2.40m .

Formula to calculate the angles of bright beams diffracted from the grafting is,

dsinθ=mλ (2)

Here,

d is the spacing between adjacent slits.

m is order number of intensity maximum.

λ is wavelength of light.

θ is the angle by which ray is diffracted.

The spacing between adjacent slit is inverse of number of rulings per centimeter is,

d=18000cm=1.25×104cm

Substitute 1.25×104cm for d , 1 for m and 550nm for λ in equation (2).

1.25×104cm×102m1cm(sinθ)=1550nm×109m1nm1.25×106msinθ=550×109mθ=sin1(550×109m1.25×106m)=26.10°

For the value of y ,

tanθ=yLy=Ltanθ

Substitute 2.40m for L , and 26.1° for θ in above equation.

y=2.40tan(26.1°)=2.40m(0.489)=1.18m

Formula to calculate the dispersion is,

dλdy=L2dm(L2+y2)32

Here,

L is the distance between slits and screen.

m is order number of intensity maximum.

y is position relative to the center of a diffraction pattern.

Substitute 2.40m for L , 1 for m , 1.18m for y and 1.25×106m for d to calculate dλdy .

dλdy=(2.4m)2(1.25×106m)1((2.4m)2+(1.18m)2)32=7.2×106m(7.1524)32m=3.77107m1m×102cm1m=3.77109mcm

Further solve the above equation.

dλdy=3.77×109m×(109nm1m)cm=3.77nm/cm

Conclusion:

Therefore, the dispersion is 3.77nm/cm .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A satellite has a mass of 100kg and is located at 2.00 x 10^6 m above the surface of the earth. a) What is the potential energy associated with the satellite at this loction? b) What is the magnitude of the gravitational force on the satellite?
No chatgpt pls will upvote
Correct answer  No chatgpt pls will upvote

Chapter 38 Solutions

Physics for Scientists and Engineers with Modern Physics, Technology Update

Ch. 38 - Prob. 4OQCh. 38 - Prob. 5OQCh. 38 - Prob. 6OQCh. 38 - Prob. 7OQCh. 38 - Prob. 8OQCh. 38 - Prob. 9OQCh. 38 - Prob. 10OQCh. 38 - Prob. 11OQCh. 38 - Prob. 12OQCh. 38 - Prob. 1CQCh. 38 - Prob. 2CQCh. 38 - Prob. 3CQCh. 38 - Prob. 4CQCh. 38 - Prob. 5CQCh. 38 - Prob. 6CQCh. 38 - Prob. 7CQCh. 38 - Prob. 8CQCh. 38 - Prob. 9CQCh. 38 - Prob. 10CQCh. 38 - Prob. 11CQCh. 38 - Prob. 12CQCh. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - Coherent light of wavelength 501.5 nm is sent...Ch. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - What is the approximate size of the smallest...Ch. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Consider an array of parallel wires with uniform...Ch. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - A grating with 250 grooves/mm is used with an...Ch. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Light from an argon laser strikes a diffraction...Ch. 38 - Show that whenever white light is passed through a...Ch. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46PCh. 38 - Prob. 47PCh. 38 - Prob. 48PCh. 38 - Prob. 49PCh. 38 - Prob. 50PCh. 38 - Prob. 51PCh. 38 - Prob. 52PCh. 38 - Prob. 53APCh. 38 - Prob. 54APCh. 38 - Prob. 55APCh. 38 - Prob. 56APCh. 38 - Prob. 57APCh. 38 - Prob. 58APCh. 38 - Prob. 59APCh. 38 - Prob. 60APCh. 38 - Prob. 61APCh. 38 - Prob. 62APCh. 38 - Prob. 63APCh. 38 - Prob. 64APCh. 38 - Prob. 65APCh. 38 - Prob. 66APCh. 38 - Prob. 67APCh. 38 - Prob. 68APCh. 38 - Prob. 69APCh. 38 - Prob. 70APCh. 38 - Prob. 71APCh. 38 - Prob. 72APCh. 38 - Prob. 73APCh. 38 - Light of wavelength 632.8 nm illuminates a single...Ch. 38 - Prob. 75CPCh. 38 - Prob. 76CPCh. 38 - Prob. 77CPCh. 38 - Prob. 78CPCh. 38 - Prob. 79CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY