
Concept explainers
Coherent light of wavelength 501.5 nm is sent through two parallel slits in an opaque material. Each slit is 0.700 μm wide. Their centers are 2.80 μm apart. The light then falls on a semicylindrical screen, with its axis at the midline between the slits. We would like to describe the appearance of the pattern of light visible on the screen. (a) Find the direction for each two-slit interference maximum on the screen as an angle away from the bisector of the line joining the slits. (b) How many angles are there that represent two-slit interference maxima? (c) Find the direction for each single-slit interference minimum on the screen as an angle away from the bisector of the line joining the slits. (d) How many angles are there that represent single-slit interference minima? (e) How many of the angles in part (d) are identical to those in part (a)? (f) How many bright fringes are visible on the screen? (g) If the intensity of the central fringe is Imax, what is the intensity of the last fringe visible on the screen?
(a)

The direction for the each two slit interference as an angle away from the bisector of the line joining the centre of the slits.
Answer to Problem 12P
The possible direction of two slit interference maxima are
Explanation of Solution
Given information: The wavelength of light is
The condition for double slit interference maxima is,
Here
Further solve equation (1) as;
Substitute
For different value of
For
Substitute
Thus for
For
Substitute
Thus for
For
Substitute
Thus for
For
Substitute
Thus for
For
Substitute
Thus for
For
Substitute
Thus for
For
Substitute
The value of
Conclusion:
Therefore, there are
(b)

The numbers of angles that represents two slit interference maxima.
Answer to Problem 12P
There are
Explanation of Solution
The calculation in part (a) shows that for zero order there is one angle and for first, second, third, fourth and fifth order there are each two direction for a single that represent the two slit interference maxima
The possible angles are
Conclusion:
Therefore, there are
(c)

The direction of each single-slit interference minimum on the screen as an angle away from the bisector of the line joining the slits.
Answer to Problem 12P
The direction of each single-slit interference minimum on the screen as an angle away from the bisector of the line joining the slits is.
Explanation of Solution
Given Info: The condition for the interference minima in single slit interference minima is,
Here,
Substitute
For different value of
For
Substitute
Thus for
For
Substitute
The value of
Thus up to second order the single slit interference is possible.
Conclusion:
Therefore, the possible directions are
(d)

The numbers of angles that represents single slit interference maxima.
Answer to Problem 12P
There are
Explanation of Solution
The calculation in part (c) shows that for first order only the single slit interference minima is possible.
The possible angles are
So there are total
Conclusion:
Therefore, there are
(e)

The numbers of angles that are identical for single interference minima and double slit interference maxima.
Answer to Problem 12P
There are
Explanation of Solution
The calculation in part (a) and part (c) shows that the angles
So there are total
Conclusion:
Therefore, there are
(f)

The number of bright fringes visible on the screen.
Answer to Problem 12P
There are
Explanation of Solution
The calculation in part (a) and part (c) shows that the angles
So, for the position at
Thus there are
So, there are
Conclusion:
Therefore, there are
(g)

The intensity of the last fringe on the screen in terms of maximum intensity.
Answer to Problem 12P
The intensity of the last fringe is
Explanation of Solution
The formula to calculate the intensity at any angle is,
Here,
The last fringe occurs for the fifth order so the value of
Substitute
Conclusion:
Therefore, the intensity at the last fringe is
Want to see more full solutions like this?
Chapter 38 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
- A bungee jumper plans to bungee jump from a bridge 64.0 m above the ground. He plans to use a uniform elastic cord, tied to a harness around his body, to stop his fall at a point 6.00 m above the water. Model his body as a particle and the cord as having negligible mass and obeying Hooke's law. In a preliminary test he finds that when hanging at rest from a 5.00 m length of the cord, his body weight stretches it by 1.55 m. He will drop from rest at the point where the top end of a longer section of the cord is attached to the bridge. (a) What length of cord should he use? Use subscripts 1 and 2 respectively to represent the 5.00 m test length and the actual jump length. Use Hooke's law F = KAL and the fact that the change in length AL for a given force is proportional the length L (AL = CL), to determine the force constant for the test case and for the jump case. Use conservation of mechanical energy to determine the length of the rope. m (b) What maximum acceleration will he…arrow_forward9 V 300 Ω www 100 Ω 200 Ω www 400 Ω 500 Ω www 600 Ω ww 700 Ω Figure 1: Circuit symbols for a variety of useful circuit elements Problem 04.07 (17 points). Answer the following questions related to the figure below. A What is the equivalent resistance of the network of resistors in the circuit below? B If the battery has an EMF of 9V and is considered as an ideal batter (internal resistance is zero), how much current flows through it in this circuit? C If the 9V EMF battery has an internal resistance of 2 2, would this current be larger or smaller? By how much? D In the ideal battery case, calculate the current through and the voltage across each resistor in the circuit.arrow_forwardhelparrow_forward
- If the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.)arrow_forwardTruck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as shown in the figure below. When the main leaf spring is compressed by distance yo, the helper spring engages and then helps to support any additional load. Suppose the leaf spring constant is 5.05 × 105 N/m, the helper spring constant is 3.50 × 105 N/m, and y = 0.500 m. Truck body yo Main leaf spring -"Helper" spring Axle (a) What is the compression of the leaf spring for a load of 6.00 × 105 N? Your response differs from the correct answer by more than 10%. Double check your calculations. m (b) How much work is done in compressing the springs? ☑ Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. Jarrow_forwardA spring is attached to an inclined plane as shown in the figure. A block of mass m = 2.71 kg is placed on the incline at a distance d = 0.285 m along the incline from the end of the spring. The block is given a quick shove and moves down the incline with an initial speed v = 0.750 m/s. The incline angle is = 20.0°, the spring constant is k = 505 N/m, and we can assume the surface is frictionless. By what distance (in m) is the spring compressed when the block momentarily comes to rest? m m 0 k wwwwarrow_forward
- A block of mass m = 2.50 kg situated on an incline at an angle of k=100 N/m www 50.0° is connected to a spring of negligible mass having a spring constant of 100 N/m (Fig. P8.54). The pulley and incline are frictionless. The block is released from rest with the spring initially unstretched. Ө m i (a) How far does it move down the frictionless incline before coming to rest? m (b) What is its acceleration at its lowest point? Magnitude m/s² Direction O up the incline down the inclinearrow_forward(a) A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m. The block travels down the track, hits a spring of force constant 2,100 N/m, and compresses the spring 0.250 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between points B and C. -A 3.00 m B C -6.00 m i (b) What If? The spring now expands, forcing the block back to the left. Does the block reach point B? Yes No If the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.) marrow_forwardA ball of mass m = 1.95 kg is released from rest at a height h = 57.0 cm above a light vertical spring of force constant k as in Figure [a] shown below. The ball strikes the top of the spring and compresses it a distance d = 7.80 cm as in Figure [b] shown below. Neglecting any energy losses during the collision, find the following. т m a d T m b i (a) Find the speed of the ball just as it touches the spring. 3.34 m/s (b) Find the force constant of the spring. Your response differs from the correct answer by more than 10%. Double check your calculations. kN/marrow_forward
- I need help with questions 1-10 on my solubility curve practice sheet. I tried to my best ability on the answers, however, i believe they are wrong and I would like to know which ones a wrong and just need help figuring it out.arrow_forwardQuestion: For a liquid with typical values a = 10-3K-¹ K = 10-4 bar-1 V=50 cm³ mol-1, Cp 200 J mol-1K-1, calculate the following quantities at 300 K and 1 bar for one mole of gas: 1. () P ән 2. (9) T 3. (V) T 4. (1) P 5. (9) T 6. Cv 7. (OF)Tarrow_forwardA,B,C AND Darrow_forward
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





