Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 75CP
(a)
To determine
The phase difference between the ray O and E after travelling the thickness of the plate is
(b)
To determine
The minimum value of thickness of the quartz plate for which phase difference is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
As shown in Figure P35.73, a light ray is incident normal to one face of a 30°-60°-90° block of flint glass (a prism) that is immersed in water.
(a) Determine the exit angle θ3 of the ray.(b) A substance is dissolved in the water to increase the index of refraction n2. At what value of n2 does total internal reflection cease at point P?
When (the light ray illustrated in Figure P35.22 passes through the glass block of index of refraction n= 1.50, it is shifted laterally by the distance d.(a) Find the value of d. (b) Find the time interval required for the light to pass through the glass block.
A block of crown glass is immersed in water as in the figure below. A light ray is incident on the top face at an angle of θ1= 41° with the normal and exits the block at point P.
Find the angle of refraction θ2 of the light ray leaving the block at P.
80.2°
41°
43.3°
68.9°
Chapter 38 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 38.2 - Suppose the slit width in Figure 37.4 is made half...Ch. 38.2 - Prob. 38.2QQCh. 38.3 - Cats eyes have pupils that can be modeled as...Ch. 38.3 - Suppose you are observing a binary star with a...Ch. 38.4 - Ultraviolet light of wavelength 350 nm is incident...Ch. 38.6 - A polarizer for microwaves can be made as a grid...Ch. 38.6 - Prob. 38.7QQCh. 38 - Prob. 1OQCh. 38 - Prob. 2OQCh. 38 - Prob. 3OQ
Ch. 38 - Prob. 4OQCh. 38 - Prob. 5OQCh. 38 - Prob. 6OQCh. 38 - Prob. 7OQCh. 38 - Prob. 8OQCh. 38 - Prob. 9OQCh. 38 - Prob. 10OQCh. 38 - Prob. 11OQCh. 38 - Prob. 12OQCh. 38 - Prob. 1CQCh. 38 - Prob. 2CQCh. 38 - Prob. 3CQCh. 38 - Prob. 4CQCh. 38 - Prob. 5CQCh. 38 - Prob. 6CQCh. 38 - Prob. 7CQCh. 38 - Prob. 8CQCh. 38 - Prob. 9CQCh. 38 - Prob. 10CQCh. 38 - Prob. 11CQCh. 38 - Prob. 12CQCh. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - Coherent light of wavelength 501.5 nm is sent...Ch. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - What is the approximate size of the smallest...Ch. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Consider an array of parallel wires with uniform...Ch. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - A grating with 250 grooves/mm is used with an...Ch. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Light from an argon laser strikes a diffraction...Ch. 38 - Show that whenever white light is passed through a...Ch. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46PCh. 38 - Prob. 47PCh. 38 - Prob. 48PCh. 38 - Prob. 49PCh. 38 - Prob. 50PCh. 38 - Prob. 51PCh. 38 - Prob. 52PCh. 38 - Prob. 53APCh. 38 - Prob. 54APCh. 38 - Prob. 55APCh. 38 - Prob. 56APCh. 38 - Prob. 57APCh. 38 - Prob. 58APCh. 38 - Prob. 59APCh. 38 - Prob. 60APCh. 38 - Prob. 61APCh. 38 - Prob. 62APCh. 38 - Prob. 63APCh. 38 - Prob. 64APCh. 38 - Prob. 65APCh. 38 - Prob. 66APCh. 38 - Prob. 67APCh. 38 - Prob. 68APCh. 38 - Prob. 69APCh. 38 - Prob. 70APCh. 38 - Prob. 71APCh. 38 - Prob. 72APCh. 38 - Prob. 73APCh. 38 - Light of wavelength 632.8 nm illuminates a single...Ch. 38 - Prob. 75CPCh. 38 - Prob. 76CPCh. 38 - Prob. 77CPCh. 38 - Prob. 78CPCh. 38 - Prob. 79CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How many times will the incident beam in Figure P34.33 (page 922) be reflected by each of the parallel mirrors? Figure P34.33arrow_forwardIn the figure, a light ray in air is incident on a flat layer of material 2 that has an index of refraction n₂ = 1.9. Beneath material 2 is material 3 with an index of refraction ng. The ray is incident on the air-material 2 interface at the Brewster angle for that interface. The ray of light refracted into material 3 happens to be incident on the material 2-material 3 interface at the Brewster angle for that interface. What is the value of n3? Number i Units +9₂ V Air ng Ngarrow_forwardMedium 1 (n₁= 1.37) and medium 2 (n₂= 4.80) are two rectangular- shaped layers stacked together. An incident ray in medium 2 makes a right triangle with sides AB and BC; AB is along the normal direction of the interface. If the height of AB is h = 8.8 m, what is the minimum distance of BC (unit in meters) that will result in total internal reflection at the interface?arrow_forward
- Carbon disulfide (n2 = 1.63) is poured into a container made of crown glass (n1 = 1.52). What is the critical angle for internal reflection of a ray in the liquid when it is incident on the liquid-to-glass surface?arrow_forwardIn the figure, light is incident at angle 01 = 37.0° on a boundary between two transparent materials. Some of the light travels down through the next three layers of transparent materials, while some of it reflects upward and then escapes into the air. If n1 = 1.28, n2 = 1.40, n3 = 1.34 and n4 = 1.45, what is the value of (a) 05 and (b) 04? Air N2 n4 (a) 85: %3D Number Units (b) 84 Number Unitsarrow_forwardYou have a slab of diamond that is attached to a slab of sapphire. A laser beam starts off in the diamond (index of refraction =2.42) and then exits into sapphire (index of refraction =1.77). The beam makes an angle of 30 degrees with the normal in the diamond. What is the maximum angle of incidence that the laser will refract into the sapphire?arrow_forward
- In the figure, a light ray in air is incident on a flat layer of material 2 that has an index of refraction n₂ = 2.7. Beneath material 2 is material 3 with an index of refraction n3. The ray is incident on the air-material 2 interface at the Brewster angle for that interface. The ray of light refracted into material 3 happens to be incident on the material 2-material 3 interface at the Brewster angle for that interface. What is the value of n3? Number Units 09₂ Air ng ngarrow_forwardIn the figure, light is incident at angle θ1 = 38.0˚ on a boundary between two transparent materials. Some of the light travels down through the next three layers of transparent materials, while some of it reflects upward and then escapes into the air. If n1 = 1.28, n2 = 1.38, n3 = 1.32 and n4 = 1.47, what is the value of (a) θ5 and (b) θ4?arrow_forwardThe figure depicts a simplistic optical fiber: a plastic core (n₁ = 1.58) is surrounded by a plastic sheath (n₂ = 1.46). A light ray is incident on one end of the fiber at angle 8. The rays is to undergo total internal reflection at point A, where it encounters the core-sheath boundary. (Thus there is no loss of light through that boundary.) What is the maximum value of that allows total internal reflection at A?arrow_forward
- A plano-convex lens having a radius of curvature of r = 4.00 m is placed on a concave glass surface whose radius of curvature is R = 12.0 m as shown in Figure P36.46. Assuming 500-nm light is incident normal to the flat surface of the lens, determine the radius of the 100th bright ring.arrow_forwardIn the figure, light is incident at angle θ1 = 41˚ on a boundary between two transparent materials. Some of the light travels down through the next three layers of transparent materials, while some of it reflects upward and then escapes into the air. If n1 = 1.28, n2 = 1.36, n3 = 1.34 and n4 = 1.45, what is the value of (a) θ5 and (b) θ4?arrow_forwardA ray of light travels through air until it strikes the interface between the air and another medium. The incident ray makes an angle of ?1 = 34.0° with the normal, as shown in the figure below. Upon passage into the second medium, the ray is refracted, emerging from the interface at an angle ?2 with respect to the normal. A light ray in air is moving down and to the right and is incident on a second medium. It makes an angle ?1 with the vertical. Inside the vertical, it continues to move down and to the right but at a steeper slope than the incident ray. It makes an angle ?2 with the vertical. (a) Suppose that the second medium is flint glass. What is the angle of refraction, ?2 (in degrees)? (Enter your answer to at least one decimal place.) ° (b) Suppose that the second medium is fused quartz. What is the angle of refraction, ?2, in this case (in degrees)? (Enter your answer to at least one decimal place.) ° (c) Finally, suppose that the second medium is ethyl…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning