Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
9th Edition
ISBN: 9781259822674
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 3.8, Problem 123RP
To determine

The volume change using compressibility factor.

The error involved between the specific volume of actual value and specific volume using compressibility chart.

Expert Solution & Answer
Check Mark

Answer to Problem 123RP

The volume change using compressibility factor is 0.07006m3_.

The error involved between the volume change of actual value and volume change using compressibility chart is 1.7%_.

Explanation of Solution

Refer to Table A-1, obtain the gas constant, critical pressure, and critical temperature of steam.

R=0.4615kPam3kgK

Tcr=647.1K

Pcr=22.06MPa

Refer to Table A-6, obtain the specific volume at inlet condition by reading the value of P and T1 of 200 kPa and 300°C.

v1=1.31623m3/kg

Refer to Table A-6, obtain the specific volume at outlet condition by reading the value of P and T2 of 200 kPa and 150°C.

v2=0.95986m3/kg

Calculate the change in the volume of the exat value.

Δν=m(v1v2) (I)

Here, mass of steam is m.

Write the equation of reduced pressure at inlet condition.

PR1=P1Pcr (II)

Here, critical pressure of steam is Pcr and inlet pressure of steam is P1.

Write the equation of reduced temperature at inlet condition.

TR1=T1Tcr (III)

Here, critical temperature of steam is Tcr and inlet temperature of steam is T1.

Write the equation of reduced pressure at outlet condition.

PR2=P2Pcr (IV)

Here, outlet pressure of steam is P2.

Write the equation of reduced temperature at outlet condition.

TR12=T2Tcr (V)

Here, outlet temperature of steam is T2.

Write the volume of piston cylinder device at inlet state.

ν1=Z1mRT1P1 (VI)

Here, the compressibility factor at inlet state is Z1 and gas constant is R.

Write the volume of piston cylinder device at outlet state.

ν2=Z2mRT2P2 (VII)

Here, the compressibility factor at outlet state is Z2.

Calculate the change in the volume using compressibility factor.

Δνchart=ν1ν2 (VIII)

Calculate the percentage of error involved.

Error=vexactvchartvchart×100% (IX)

Conclusion:

Substitute 0.2 kg for m, 1.31623m3/kg for v1, and 0.95986m3/kg for v2 in Equation (I).

Δν=0.2kg(1.31623m3/kg0.95986m3/kg)=0.07128m3

Substitute 0.2 MPa for P1 and 22.06MPa for Pcr in Equation (II).

PR1=0.2MPa22.06MPa=0.0091

Substitute 300°C for T1 and 647.1 K for Tcr in Equation (III).

TR1=300°C647.1K=(300+273)K647.1K=0.886

Refer to figure A-15, “The compressibility chart”, obtain the compressibility factor, Z1  by reading the calculated reduced pressure and reduced temperature at inlet state of 0.0091 and 0.886.

Z1=0.9956

Substitute 0.2 MPa for P2 and 22.06MPa for Pcr in Equation (IV).

PR2=0.2MPa22.06MPa=0.0091

Substitute 150°C for T2 and 647.1 K for Tcr in Equation (V).

TR2=150°C647.1K=(150+273)K647.1K=0.65

Refer to figure A-15, “The compressibility chart”, obtain the compressibility factor, Z2  by reading the calculated reduced pressure and reduced temperature at inlet state of 0.0091 and 0.65.

Z2=0.9897

Substitute 0.9956 for Z1, 0.2 kg for m, 0.4615kPam3kgK for R, 300°C for T1, and 200 kPa for P1 in Equation (VI).

ν1=(0.9956)(0.2kg)(0.4615kPam3kgK)(300°C)200kPa=(0.9956)(0.2kg)(0.4615kPam3kgK)(300+273)K200kPa=0.2633m3

Substitute 0.9897 for Z2, 0.2 kg for m, 0.4615kPam3kgK for R, 150°C for T2, and 200 kPa for P2 in Equation (VII).

ν2=(0.9897)(0.2kg)(0.4615kPam3kgK)(150°C)200kPa=(0.9897)(0.2kg)(0.4615kPam3kgK)(150+273)K200kPa=0.1932m3

Substitute 0.2633m3 for ν1 and 0.1932m3 for ν2 in Equation (VIII).

Δνchart=0.2633m30.1932m3=0.07006m3

Thus, the volume change using compressibility factor is 0.07006m3_.

Substitute 0.07006m3 for Δνchart and 0.07128m3 for Δνexact in Equation (IX).

Error=0.07128m30.07006m30.07006m3×100%=1.7%

Thus, the error involved between the volume change of actual value and volume change using compressibility chart is 1.7%_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Solve this and show all of the work
Solve this and show all of the work
Solve this and show all of the work

Chapter 3 Solutions

Thermodynamics: An Engineering Approach

Ch. 3.8 - Does the amount of heat absorbed as 1 kg of...Ch. 3.8 - Does the reference point selected for the...Ch. 3.8 - What is the physical significance of hfg? Can it...Ch. 3.8 - Does hfg change with pressure? How?Ch. 3.8 - Is it true that it takes more energy to vaporize 1...Ch. 3.8 - Which process requires more energy: completely...Ch. 3.8 - In what kind of pot will a given volume of water...Ch. 3.8 - It is well known that warm air in a cooler...Ch. 3.8 - In the absence of compressed liquid tables, how is...Ch. 3.8 - A perfectly fitting pot and its lid often stick...Ch. 3.8 - Complete this table for H2O:Ch. 3.8 - Complete this table for H2O:Ch. 3.8 - Complete this table for H2O:Ch. 3.8 - Complete this table for H2O:Ch. 3.8 - Complete this table for refrigerant-134a:Ch. 3.8 - Complete this table for refrigerant-134a:Ch. 3.8 - A 1.8-m3 rigid tank contains steam at 220C....Ch. 3.8 - One pound-mass of water fills a container whose...Ch. 3.8 - A pistoncylinder device contains 0.85 kg of...Ch. 3.8 - 10 kg of R-134a fill a 1.115-m3 rigid container at...Ch. 3.8 - What is the specific internal energy of water at...Ch. 3.8 - What is the specific volume of water at 5 MPa and...Ch. 3.8 - What is the specific volume of R-134a at 20C and...Ch. 3.8 - Refrigerant-134a at 200 kPa and 25C flows through...Ch. 3.8 - One kilogram of R-134a fills a 0.14-m3 weighted...Ch. 3.8 - One kilogram of water vapor at 200 kPa fills the...Ch. 3.8 - The temperature in a pressure cooker during...Ch. 3.8 - How much error would one expect in determining the...Ch. 3.8 - Water is to be boiled at sea level in a...Ch. 3.8 - Repeat Prob. 340 for a location at an elevation of...Ch. 3.8 - 10 kg of R-134a at 300 kPa fills a rigid container...Ch. 3.8 - 100 kg of R-134a at 200 kPa are contained in a...Ch. 3.8 - Water initially at 200 kPa and 300C is contained...Ch. 3.8 - Saturated steam coming off the turbine of a steam...Ch. 3.8 - A person cooks a meal in a 30-cm-diameter pot that...Ch. 3.8 - Water is boiled at 1 atm pressure in a...Ch. 3.8 - Repeat Prob. 347 for a location at 2000-m...Ch. 3.8 - Prob. 49PCh. 3.8 - A rigid tank with a volume of 1.8 m3 contains 40...Ch. 3.8 - A pistoncylinder device contains 0.005 m3 of...Ch. 3.8 - A 5-ft3 rigid tank contains a saturated mixture of...Ch. 3.8 - Superheated water vapor at 180 psia and 500F is...Ch. 3.8 - One kilogram of water fills a 150-L rigid...Ch. 3.8 - 10 kg of R-134a fill a 0.7-m3 weighted...Ch. 3.8 - A pistoncylinder device contains 0.6 kg of steam...Ch. 3.8 - A pistoncylinder device initially contains 1.4 kg...Ch. 3.8 - Water is being heated in a vertical pistoncylinder...Ch. 3.8 - A rigid tank initially contains 1.4 kg saturated...Ch. 3.8 - A pistoncylinder device initially contains 50 L of...Ch. 3.8 - The spring-loaded pistoncylinder device shown in...Ch. 3.8 - A pistoncylinder device initially contains steam...Ch. 3.8 - Under what conditions is the ideal-gas assumption...Ch. 3.8 - What is the difference between mass and molar...Ch. 3.8 - Propane and methane are commonly used for heating...Ch. 3.8 - What is the specific volume of oxygen at 25 psia...Ch. 3.8 - A 100-L container is filled with 1 kg of air at a...Ch. 3.8 - A mass of 1 lbm of argon is maintained at 200 psia...Ch. 3.8 - A 400-L rigid tank contains 5 kg of air at 25C....Ch. 3.8 - The pressure gage on a 2.5-m3 oxygen tank reads...Ch. 3.8 - A spherical balloon with a diameter of 9 m is...Ch. 3.8 - Reconsider Prob. 373. Using appropriate software,...Ch. 3.8 - A 1-m3 tank containing air at 10C and 350 kPa is...Ch. 3.8 - A mass of 10 g of oxygen fill a weighted...Ch. 3.8 - A mass of 0.1 kg of helium fills a 0.2 m3 rigid...Ch. 3.8 - A rigid tank whose volume is unknown is divided...Ch. 3.8 - A rigid tank contains 20 lbm of air at 20 psia and...Ch. 3.8 - In an informative article in a magazine it is...Ch. 3.8 - What is the physical significance of the...Ch. 3.8 - Determine the specific volume of refrigerant-134a...Ch. 3.8 - Refrigerant-134a at 400 psia has a specific volume...Ch. 3.8 - Determine the specific volume of superheated water...Ch. 3.8 - Determine the specific volume of superheated water...Ch. 3.8 - Determine the specific volume of nitrogen gas at...Ch. 3.8 - Prob. 88PCh. 3.8 - Carbon dioxide gas enters a pipe at 3 MPa and 500...Ch. 3.8 - Prob. 90PCh. 3.8 - A 0.016773-m3 tank contains 1 kg of...Ch. 3.8 - Prob. 92PCh. 3.8 - What is the percentage of error involved in...Ch. 3.8 - What is the physical significance of the two...Ch. 3.8 - Refrigerant-134a at 400 psia has a specific volume...Ch. 3.8 - A 3.27-m3 tank contains 100 kg of nitrogen at 175...Ch. 3.8 - Nitrogen at 150 K has a specific volume of...Ch. 3.8 - A 1-m3 tank contains 2.841 kg of steam at 0.6 MPa....Ch. 3.8 - Prob. 103PCh. 3.8 - Prob. 104PCh. 3.8 - On a certain day, the temperature and relative...Ch. 3.8 - Prob. 106PCh. 3.8 - Consider two rooms that are identical except that...Ch. 3.8 - A thermos bottle is half-filled with water and is...Ch. 3.8 - Complete the blank cells in the following table of...Ch. 3.8 - Complete the blank cells in the following table of...Ch. 3.8 - Prob. 111RPCh. 3.8 - Prob. 112RPCh. 3.8 - The gage pressure of an automobile tire is...Ch. 3.8 - A tank contains argon at 600C and 200 kPa gage....Ch. 3.8 - The combustion in a gasoline engine may be...Ch. 3.8 - Prob. 116RPCh. 3.8 - Prob. 117RPCh. 3.8 - A rigid tank with a volume of 0.117 m3 contains 1...Ch. 3.8 - A 9-m3 tank contains nitrogen at 17C and 600 kPa....Ch. 3.8 - A 10-kg mass of superheated refrigerant-134a at...Ch. 3.8 - A 4-L rigid tank contains 2 kg of saturated...Ch. 3.8 - Prob. 123RPCh. 3.8 - A tank whose volume is unknown is divided into two...Ch. 3.8 - Prob. 125RPCh. 3.8 - A tank contains helium at 37C and 140 kPa gage....Ch. 3.8 - Prob. 127RPCh. 3.8 - On the property diagrams indicated below, sketch...Ch. 3.8 - Ethane at 10 MPa and 100C is heated at constant...Ch. 3.8 - Steam at 400C has a specific volume of 0.02 m3/kg....Ch. 3.8 - Consider an 18-m-diameter hot-air balloon that,...Ch. 3.8 - Prob. 135FEPCh. 3.8 - A 3-m3 rigid vessel contains steam at 2 MPa and...Ch. 3.8 - Prob. 137FEPCh. 3.8 - Water is boiled at 1 atm pressure in a coffeemaker...Ch. 3.8 - Prob. 139FEPCh. 3.8 - Water is boiled in a pan on a stove at sea level....Ch. 3.8 - A rigid tank contains 2 kg of an ideal gas at 4...Ch. 3.8 - The pressure of an automobile tire is measured to...Ch. 3.8 - Consider a sealed can that is filled with...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics - Chapter 3 - Pure substances; Author: Engineering Deciphered;https://www.youtube.com/watch?v=bTMQtj13yu8;License: Standard YouTube License, CC-BY