Thermodynamics: An Engineering Approach
9th Edition
ISBN: 9781259822674
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3.8, Problem 127RP
(a)
To determine
Plot the graph of the
(b)
To determine
Plot the graph of the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The diagram presented represents a thermodynamic process experienced by 27.5mmol (millimoles) of a monatomic ideal gas. The volume axis is divided into equal increments υ0=777cm3 while the pressure axis is divided into equal increments p0=0.301atm.
Part (a) How much work, in joules, does the gas perform on its environment during the thermodynamic process represented in the diagram?
Part (b) What is the change, in joules, of the internal energy of the gas during the process represented in the diagram?
Part (c) How much heat, in joules, is absorbed by the gas during the process represented in the diagram?
For an isothermal quasi-equilibrium process involving an ideal gas. The work is given by the expression
Water exists at 200 C and 300 kPa.
In the question that follows, select the answer that is closest to the true value.
What is the internal energy of the water in units of kJ/kg ?
Chapter 3 Solutions
Thermodynamics: An Engineering Approach
Ch. 3.8 - A propane tank is filled with a mixture of liquid...Ch. 3.8 - Is iced water a pure substance? Why?Ch. 3.8 - What is the difference between saturated vapor and...Ch. 3.8 - What is the difference between saturated liquid...Ch. 3.8 - If the pressure of a substance is increased during...Ch. 3.8 - Is it true that water boils at higher temperature...Ch. 3.8 - What is the difference between the critical point...Ch. 3.8 - A househusband is cooking beef stew for his family...Ch. 3.8 - How does a boiling process at supercritical...Ch. 3.8 - What is quality? Does it have any meaning in the...
Ch. 3.8 - Does the amount of heat absorbed as 1 kg of...Ch. 3.8 - Does the reference point selected for the...Ch. 3.8 - What is the physical significance of hfg? Can it...Ch. 3.8 - Does hfg change with pressure? How?Ch. 3.8 - Is it true that it takes more energy to vaporize 1...Ch. 3.8 - Which process requires more energy: completely...Ch. 3.8 - In what kind of pot will a given volume of water...Ch. 3.8 - It is well known that warm air in a cooler...Ch. 3.8 - In the absence of compressed liquid tables, how is...Ch. 3.8 - A perfectly fitting pot and its lid often stick...Ch. 3.8 - Complete this table for H2O:Ch. 3.8 - Complete this table for H2O:Ch. 3.8 - Complete this table for H2O:Ch. 3.8 - Complete this table for H2O:Ch. 3.8 - Complete this table for refrigerant-134a:Ch. 3.8 - Complete this table for refrigerant-134a:Ch. 3.8 - A 1.8-m3 rigid tank contains steam at 220C....Ch. 3.8 - One pound-mass of water fills a container whose...Ch. 3.8 - A pistoncylinder device contains 0.85 kg of...Ch. 3.8 - 10 kg of R-134a fill a 1.115-m3 rigid container at...Ch. 3.8 - What is the specific internal energy of water at...Ch. 3.8 - What is the specific volume of water at 5 MPa and...Ch. 3.8 - What is the specific volume of R-134a at 20C and...Ch. 3.8 - Refrigerant-134a at 200 kPa and 25C flows through...Ch. 3.8 - One kilogram of R-134a fills a 0.14-m3 weighted...Ch. 3.8 - One kilogram of water vapor at 200 kPa fills the...Ch. 3.8 - The temperature in a pressure cooker during...Ch. 3.8 - How much error would one expect in determining the...Ch. 3.8 - Water is to be boiled at sea level in a...Ch. 3.8 - Repeat Prob. 340 for a location at an elevation of...Ch. 3.8 - 10 kg of R-134a at 300 kPa fills a rigid container...Ch. 3.8 - 100 kg of R-134a at 200 kPa are contained in a...Ch. 3.8 - Water initially at 200 kPa and 300C is contained...Ch. 3.8 - Saturated steam coming off the turbine of a steam...Ch. 3.8 - A person cooks a meal in a 30-cm-diameter pot that...Ch. 3.8 - Water is boiled at 1 atm pressure in a...Ch. 3.8 - Repeat Prob. 347 for a location at 2000-m...Ch. 3.8 - Prob. 49PCh. 3.8 - A rigid tank with a volume of 1.8 m3 contains 40...Ch. 3.8 - A pistoncylinder device contains 0.005 m3 of...Ch. 3.8 - A 5-ft3 rigid tank contains a saturated mixture of...Ch. 3.8 - Superheated water vapor at 180 psia and 500F is...Ch. 3.8 - One kilogram of water fills a 150-L rigid...Ch. 3.8 - 10 kg of R-134a fill a 0.7-m3 weighted...Ch. 3.8 - A pistoncylinder device contains 0.6 kg of steam...Ch. 3.8 - A pistoncylinder device initially contains 1.4 kg...Ch. 3.8 - Water is being heated in a vertical pistoncylinder...Ch. 3.8 - A rigid tank initially contains 1.4 kg saturated...Ch. 3.8 - A pistoncylinder device initially contains 50 L of...Ch. 3.8 - The spring-loaded pistoncylinder device shown in...Ch. 3.8 - A pistoncylinder device initially contains steam...Ch. 3.8 - Under what conditions is the ideal-gas assumption...Ch. 3.8 - What is the difference between mass and molar...Ch. 3.8 - Propane and methane are commonly used for heating...Ch. 3.8 - What is the specific volume of oxygen at 25 psia...Ch. 3.8 - A 100-L container is filled with 1 kg of air at a...Ch. 3.8 - A mass of 1 lbm of argon is maintained at 200 psia...Ch. 3.8 - A 400-L rigid tank contains 5 kg of air at 25C....Ch. 3.8 - The pressure gage on a 2.5-m3 oxygen tank reads...Ch. 3.8 - A spherical balloon with a diameter of 9 m is...Ch. 3.8 - Reconsider Prob. 373. Using appropriate software,...Ch. 3.8 - A 1-m3 tank containing air at 10C and 350 kPa is...Ch. 3.8 - A mass of 10 g of oxygen fill a weighted...Ch. 3.8 - A mass of 0.1 kg of helium fills a 0.2 m3 rigid...Ch. 3.8 - A rigid tank whose volume is unknown is divided...Ch. 3.8 - A rigid tank contains 20 lbm of air at 20 psia and...Ch. 3.8 - In an informative article in a magazine it is...Ch. 3.8 - What is the physical significance of the...Ch. 3.8 - Determine the specific volume of refrigerant-134a...Ch. 3.8 - Refrigerant-134a at 400 psia has a specific volume...Ch. 3.8 - Determine the specific volume of superheated water...Ch. 3.8 - Determine the specific volume of superheated water...Ch. 3.8 - Determine the specific volume of nitrogen gas at...Ch. 3.8 - Prob. 88PCh. 3.8 - Carbon dioxide gas enters a pipe at 3 MPa and 500...Ch. 3.8 - Prob. 90PCh. 3.8 - A 0.016773-m3 tank contains 1 kg of...Ch. 3.8 - Prob. 92PCh. 3.8 - What is the percentage of error involved in...Ch. 3.8 - What is the physical significance of the two...Ch. 3.8 - Refrigerant-134a at 400 psia has a specific volume...Ch. 3.8 - A 3.27-m3 tank contains 100 kg of nitrogen at 175...Ch. 3.8 - Nitrogen at 150 K has a specific volume of...Ch. 3.8 - A 1-m3 tank contains 2.841 kg of steam at 0.6 MPa....Ch. 3.8 - Prob. 103PCh. 3.8 - Prob. 104PCh. 3.8 - On a certain day, the temperature and relative...Ch. 3.8 - Prob. 106PCh. 3.8 - Consider two rooms that are identical except that...Ch. 3.8 - A thermos bottle is half-filled with water and is...Ch. 3.8 - Complete the blank cells in the following table of...Ch. 3.8 - Complete the blank cells in the following table of...Ch. 3.8 - Prob. 111RPCh. 3.8 - Prob. 112RPCh. 3.8 - The gage pressure of an automobile tire is...Ch. 3.8 - A tank contains argon at 600C and 200 kPa gage....Ch. 3.8 - The combustion in a gasoline engine may be...Ch. 3.8 - Prob. 116RPCh. 3.8 - Prob. 117RPCh. 3.8 - A rigid tank with a volume of 0.117 m3 contains 1...Ch. 3.8 - A 9-m3 tank contains nitrogen at 17C and 600 kPa....Ch. 3.8 - A 10-kg mass of superheated refrigerant-134a at...Ch. 3.8 - A 4-L rigid tank contains 2 kg of saturated...Ch. 3.8 - Prob. 123RPCh. 3.8 - A tank whose volume is unknown is divided into two...Ch. 3.8 - Prob. 125RPCh. 3.8 - A tank contains helium at 37C and 140 kPa gage....Ch. 3.8 - Prob. 127RPCh. 3.8 - On the property diagrams indicated below, sketch...Ch. 3.8 - Ethane at 10 MPa and 100C is heated at constant...Ch. 3.8 - Steam at 400C has a specific volume of 0.02 m3/kg....Ch. 3.8 - Consider an 18-m-diameter hot-air balloon that,...Ch. 3.8 - Prob. 135FEPCh. 3.8 - A 3-m3 rigid vessel contains steam at 2 MPa and...Ch. 3.8 - Prob. 137FEPCh. 3.8 - Water is boiled at 1 atm pressure in a coffeemaker...Ch. 3.8 - Prob. 139FEPCh. 3.8 - Water is boiled in a pan on a stove at sea level....Ch. 3.8 - A rigid tank contains 2 kg of an ideal gas at 4...Ch. 3.8 - The pressure of an automobile tire is measured to...Ch. 3.8 - Consider a sealed can that is filled with...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A fixed quantity of steam of mass 0.12 kg has an initial temperature and pressure of 375°C and 5.5 bar respectively. The steam undergoes a polytropic process according to the law PV1.25 = constant. Calculate (i) the initial volume of the steam, and (ii) the volume and temperature when the pressure is 3 bar. Indicate the process on a P-V diagram for water. [Answers: (i) 0.064 m3, (ii) 0.104 m3, 294.7°C]arrow_forward43.0 g of 40Ar gas are sealed in a container at an initial pressure of 1.50 atm and an initial volume of 0.0500 m3 (state 1). The gas is then made to expand very, very quickly until its volume doubles (state 2). Then it is compressed very, very slowly back to its initial volume (state 3). Show the two processes on a pV diagram, and fill out the table below. p1 = p2 = p3 = V1 = V2 = V3 = T1 = T2 = T3 =arrow_forwardNEED IN RUSH PLEASE THANKS IN ADVANCEarrow_forward
- Air at a volume of 0.03m³, is at a pressure of 3.5 bar and 35°C respectively. Determine: i. the mass of gas present; ii. the temperature of the gas if the pressure increases to 1.05 MN/m? and the volume remains constant. iii. the density of the gas if pressure increases to 1.05 MN/m and the temperature remains constant.arrow_forwardA piston-cylinder contains 2.1 kg of air at T1 = 800 K and P1 = 848 kPa. The air is brought to a final temperature and pressure of T2 = 500K and P2 = 175 kPa, respectively. Throughout the process, the pressure and volume follow the relationship given below. Determine the total heat transfer Q (kJ) for the process. Note: Use the ideal gas tables for your calculations. p*vh = Constantarrow_forwardClassify the following states of 1 kg of water substance as wet, dry saturated, superheated steam, subcooled liquid, etc.: (a) p = 0.1 MPa, T = 150C , (b) p = 0.2 MPa, T = 200C (c) p = 0.2 MPa, S = 6.2 kJ/K, (d) p = 0.2 MPa, V = 0.1 m3, (e) H = 2900 kJ, S = 6.2 kJ/K,arrow_forward
- 2. Saturated liquid water at 250 kPa is contained in a piston-cylinder device as shown in the figure below. The total initial volume is 0.012m'. As the water is heated, the pressure inside the cylinder remains constant until the piston hits the stops. When the piston hits the stops the specific volume is 0.47443 m/kg. Heat transfer to the water continues until the pressure doubles. NOTE: If needed use the closest value in tables 3 to avoid interpolation. Use 5 decimal digits when using specific volume. a.) Plot the process in a P-v-diagram with respect to saturations lines. b.) Fill de table below c.) Determine the total mass P(kPa) T(°C) v(m'/kg) h(kJ/kg) Phase 2 3.arrow_forwardAmmonia (NH₃) weighing 22 kg is confined inside a cylinder equipped with a piston has an initial pressure of 413 kPa at 38° C. If 2900 kJ of heat is added to the ammonia until its pressure and temperature are 413 kPa and 100° C, respectively. What is the amount of work done by the fluid in kJ? (4 decimal places)arrow_forwardA cylindrical vessel with a diameter of 8 inches and 5 feet long contained acetylene at 300 psi gauge and 82°F. After some amount of acetylene was used, the pressure was reduced to 190 psi gauge and the temperature was 74°F. The gas constant of acetylene is 59.35 ft-lbf/lbm-°R. Determine the following: What is the initial mass in lbm of the acetylene inside the vessel What proportion in percentage of acetylene was used? What volume in ft3 would the used acetylene occupy at 30 psig and 80°F?arrow_forward
- 0.25kg/s of Carbon Dioxide (R = 0.1889 kJ/kg-K, k = 1.289) undergo a certain process in a closesystem from initial volume and temperature of 268cm3 and 134K to a final volume and temperature of 804cm3 and 402K respectively. From the data given, perform necessary analysis in determining the type of process to further solve the following questions as follow:a. Work done by/on the system (kJ/s)b. Change in Entropy (kW/K)c. Heat added/rejected by the system (kJ/s) include also the graph of this problemarrow_forwardA rigid tank contains 2 kg of water at 100 C and 60 percent quality. In the question that follows, select the answer that is closest to the true value. What is the volume of the rigid tank in units of m3?arrow_forwardDeduce for the case of a perfect gas the relationship between the gas constant and the specific heats at constant pressure and at constant volume. The specific heat at constant pressure (cp) and the gas constant (R) of a perfect gas are 1.033 kJ/kg K and 108.2 J/kg K respectively. Find the ratio of specific heat at constant pressure to that at constant volume.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics - Chapter 3 - Pure substances; Author: Engineering Deciphered;https://www.youtube.com/watch?v=bTMQtj13yu8;License: Standard YouTube License, CC-BY