Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 37, Problem 56AP
To determine
The minimum height of the ionosphere that can produce destructive interference between the direct and reflected beams.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 0.5-MHz antenna carried by an airplane flying over the ocean surface generates a wave that
approaches the water surface in the form of a normally incident plane wave with an electric-
field amplitude of 3,000 (V/m). Seawater is characterized by &r=72, µr = 1, and o = 4 (S/m).
The plane is trying to communicate a message to a submarine submerged at a depth d below
the water surface. If the submarine's receiver requires a minimum signal amplitude of 0.01
(µV/m), what is the maximum depth d to which successful communication is still possible?
Radio waves and microwaves are used in therapy to provide “deep heating” of tissue because the waves penetrate beneath the surface of the body and deposit energy. We define the penetration depth as the depth at which the wave intensity has decreased to 37% of its value at the surface. The penetration depth is 15 cm for 27 MHz radio waves. For radio frequencies such as this, the penetration depth is proportional to √λ, the square root of the wavelength.
What is the wavelength of 27 MHz radio waves?A. 11 m B. 9.0 m C. 0.011 m D. 0.009 m
A laser beam at a wavelength of 1.11 μm is coupled into an optic fiber, resulting in 138.2 mW of light inside the fiber initially. The fiber is 4.75 km long and has an absorption coefficienct of 1.562 dB/km. What light power, in mW, is at the end of the fiber?
Chapter 37 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 37.2 - Which of the following causes the fringes in a...Ch. 37.3 - Using Figure 36.6 as a model, sketch the...Ch. 37.5 - One microscope slide is placed on top of another...Ch. 37 - Prob. 1OQCh. 37 - Four trials of Youngs double-slit experiment are...Ch. 37 - Suppose Youngs double-slit experiment is performed...Ch. 37 - Prob. 4OQCh. 37 - Prob. 5OQCh. 37 - Prob. 6OQCh. 37 - Prob. 7OQ
Ch. 37 - Prob. 8OQCh. 37 - Prob. 9OQCh. 37 - A film of oil on a puddle in a parking lot shows a...Ch. 37 - Prob. 1CQCh. 37 - Prob. 2CQCh. 37 - Prob. 3CQCh. 37 - Prob. 4CQCh. 37 - Prob. 5CQCh. 37 - Prob. 6CQCh. 37 - Prob. 7CQCh. 37 - Prob. 8CQCh. 37 - Prob. 9CQCh. 37 - Two slits are separated by 0.320 mm. A beam of...Ch. 37 - Prob. 2PCh. 37 - A laser beam is incident on two slits with a...Ch. 37 - Prob. 4PCh. 37 - Prob. 5PCh. 37 - Prob. 6PCh. 37 - Prob. 7PCh. 37 - Prob. 8PCh. 37 - Prob. 9PCh. 37 - Light with wavelength 442 nm passes through a...Ch. 37 - Prob. 11PCh. 37 - Prob. 12PCh. 37 - Prob. 13PCh. 37 - Prob. 14PCh. 37 - Prob. 15PCh. 37 - A student holds a laser that emits light of...Ch. 37 - Prob. 17PCh. 37 - Prob. 18PCh. 37 - Prob. 19PCh. 37 - Prob. 20PCh. 37 - Prob. 21PCh. 37 - Prob. 22PCh. 37 - Prob. 23PCh. 37 - Prob. 24PCh. 37 - Prob. 25PCh. 37 - Monochromatic coherent light of amplitude E0 and...Ch. 37 - Prob. 27PCh. 37 - Prob. 28PCh. 37 - Prob. 29PCh. 37 - Prob. 30PCh. 37 - Prob. 31PCh. 37 - Prob. 32PCh. 37 - Prob. 33PCh. 37 - Prob. 34PCh. 37 - Prob. 35PCh. 37 - Prob. 36PCh. 37 - Prob. 37PCh. 37 - Prob. 38PCh. 37 - When a liquid is introduced into the air space...Ch. 37 - Prob. 40PCh. 37 - Prob. 41PCh. 37 - Prob. 42PCh. 37 - Prob. 43PCh. 37 - Prob. 44PCh. 37 - Prob. 45APCh. 37 - Prob. 46APCh. 37 - Prob. 47APCh. 37 - Prob. 48APCh. 37 - Prob. 49APCh. 37 - Prob. 50APCh. 37 - Prob. 51APCh. 37 - In a Youngs interference experiment, the two slits...Ch. 37 - In a Youngs double-slit experiment using light of...Ch. 37 - Prob. 54APCh. 37 - Prob. 55APCh. 37 - Prob. 56APCh. 37 - Prob. 57APCh. 37 - Prob. 58APCh. 37 - Prob. 59APCh. 37 - Prob. 60APCh. 37 - Prob. 61APCh. 37 - Prob. 62APCh. 37 - Prob. 63APCh. 37 - Prob. 64APCh. 37 - Prob. 65APCh. 37 - Prob. 66APCh. 37 - Prob. 67APCh. 37 - Prob. 68APCh. 37 - Prob. 69APCh. 37 - Prob. 70APCh. 37 - Prob. 71CPCh. 37 - Prob. 72CPCh. 37 - Prob. 73CPCh. 37 - Prob. 74CPCh. 37 - Prob. 75CPCh. 37 - Prob. 76CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A linearly polarized microwave of wavelength 1.50 cm is directed along the positive x axis. The electric field vector has a maximum value of 175 V/m and vibrates in the xy plane. Assuming the magnetic field component of the wave can be written in the form B = Bmax sin (kx t), give values for (a) Bmax, (b) k, and (c) . (d) Determine in which plane the magnetic field vector vibrates. (e) Calculate the average value of the Poynting vector for this wave. (f) If this wave were directed at normal incidence onto a perfectly reflecting sheet, what radiation pressure would it exert? (g) What acceleration would be imparted to a 500-g sheet (perfectly reflecting and at normal incidence) with dimensions of 1.00 m 0.750 m?arrow_forwardAssume the mostly infrared radiation from a heat lamp acts like a continuous wave with wavelength 1.50 µm. (a) If the lamp's 205 W output is focused on a person's shoulder, over a circular area 24.0 cm in diameter, what is the intensity in W/m2? 2266.9 W/m2 (b) What is the peak electric field strength in kV/m? 0.924 X kV/m (c) Find the peak magnetic field strength in µT. 3.08 X µT (d) How long will it take in seconds to increase the temperature of the 3.80 kg shoulder by 2.00°C, assuming no other heat transfer and given specific heat is 3.47 x 103 J/(k • °C)? 128.64arrow_forwardRadio waves and microwaves are used in therapy to provide “deep heating” of tissue because the waves penetrate beneath the surface of the body and deposit energy. We define the penetration depth as the depth at which the wave intensity has decreased to 37% of its value at the surface. The penetration depth is 15 cm for 27 MHz radio waves. For radio frequencies such as this, the penetration depth is proportional to √λ, the square root of the wavelength. For 27 MHz radio waves, the wave intensity has been reduced by a factor of 3 at a depth of approximately 15 cm. At this point in the tissue, the electric field amplitude has decreased by a factor ofA. 9 B. 3√3 C. 3 D. √3arrow_forward
- Please help with A, B, and Carrow_forwardRadio waves and microwaves are used in therapy to provide “deep heating” of tissue because the waves penetrate beneath the surface of the body and deposit energy. We define the penetration depth as the depth at which the wave intensity has decreased to 37% of its value at the surface. The penetration depth is 15 cm for 27 MHz radio waves. For radio frequencies such as this, the penetration depth is proportional to √λ, the square root of the wavelength. If the frequency of the radio waves is increased, the depth of penetrationA. Increases. B. Does not change. C. Decreases.arrow_forwardLASIK eye surgery uses pulses of laser light to shave off tissue from the cornea, reshaping it. A typical LASIK laser emits a 1.0-mmmm-diameter laser beam with a wavelength of 193 nmnm. Each laser pulse lasts 13 nsns and contains 1.1 mJmJ of light energy. What is the power of one laser pulse? During the very brief time of the pulse, what is the intensity of the light wave?arrow_forward
- A dish antenna with a diameter of 15.0 m receives a beam of radio radiation at normal incidence. Theradio signal is a continuous wave with an electric field given by:E = 0.75 sin[(0.838/m)x − (2.51 × 108/s)t] N/C.Here, x is in meters and t is in seconds. Assume that all the radiation that falls on the dish is absorbed.(a) Calculate the speed of the radiation. Don’t assume it must be equal to c: use the equation above tocalculate this speed.(b) Calculate the amplitude of the magnetic field of this wave.(c) Calculate the Poynting flux of the radiation.(d) Suppose the beam that is entering this dish has the same diameter as the dish. Suppose a pulse ofradiation that lasts for 10.0 ns travels along the beam and into the dish. This pulse has an energy density of1.0 × 10−9 J/m3. How many Joules from the pulse does the dish absorb?(e) The Sun has a surface temperature of 5770 K, a radius of 6.96 × 105 km, an average distance from Earth of1.496 × 108 km, and radiates e/m radiation into space…arrow_forwardThe GPS (Global Positioning System) satellites are approximately 5.18 m across and transmit two low-power signals, one of which is at 1575.42 MHz (in the UHF band). In a series of laboratory tests on the satellite, you put two 1575.42 MHz UHF transmitters at opposite ends of the satellite. These broadcast in phase uniformly in all directions. You measure the intensity at points on a circle that is several hundred meters in radius and centered on the satellite. You measure angles on this circle relative to a point that lies along the centerline of the satellite (that is, the perpendicular bisector of a line which extends from one transmitter to the other). At this point on the circle, the measured intensity is 2.00 W/m². At how many other angles in the range 0° < 0 < 90° is the intensity also 2.00 W/m²? Express your answer as an integer. N = Submit Part B 0 = Submit 2 Find the four smallest (positive) angles in the range 0° < 0 < 90° for which the intensity is 2.00 W/m². Express your…arrow_forwardYou and your friend Bruce are experimenting with a red lamp shade and blue lamp shade. You place lamp shades individually over a 120-W light bulb. Assume that the light radiates from the lamps uniformly and 7.3% of their power is converted to light. (a) What is the average intensity of the light at 1.4 m from the red (A = 710 nm) lamp shade? W/m2 (h) Is the average intensity of the blue = 480 nm) lamp shade at 1 6 m greater than less than or egual to thearrow_forward
- The GPS (Global Positioning System) satellites are approximately 5.18 m across and transmit two low-power signals, one of which is at 1575.42 MHz (in the UHF band). In a series of laboratory tests on the satellite, you put two 1575.42 MHz UHF transmitters at opposite ends of the satellite. These broadcast in phase uniformly in all directions. You measure the intensity at points on a circle that is several hundred meters in radius and centered on the satellite. You measure angles on this circle relative to a point that lies along the centerline of the satellite (that is, the perpendicular bisector of a line that extends from one transmitter to the other). At this point on the circle, the measured intensity is 2.00 W/m2 . (a) At how many other angles in the range 0° < θ < 90° is the intensity also 2.00 W/m2 ? (b) Find the four smallest angles in the range 0° < θ < 90° for which the intensity is 2.00 W/m2 . (c) What is the intensity at a point on the circle at an angle of…arrow_forwardSources A and B emit long-range radio waves of wavelength 380 m, with the phase of the emission from A ahead of that from source B by 90°. The distance rA from A to a detector is greater than the corresponding distance rB from B by 140 m. What is the magnitude of the phase difference at the detector?arrow_forwardA point source emits monochromatic electromagnetic waves into air uniformly in all directions. You measure the amplitude Emax of the electric field at several distances from the source. After graphing your results as Emax versus 1/r you find that the data lie close to a straight line that has slope 45.0 N⋅m/C. What is the average power output of the source?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY