Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 37, Problem 7CQ
(a)
To determine
The necessary condition for the path length difference between two waves that interfere constructively.
(b)
To determine
The necessary condition for the path length difference between two waves that interfere destructively.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
i need the answer quickly
Q) Two plane monochromatic waves propagating in the same
direction with amplitudes A and 2 A and differing in phase by
π/3 rad superpose. Calculate the amplitude of the resultant
wave.
The amplitude of two waves are in ratio
5: 2. If all other conditions for, the two waves
are same, then the ratio of their energy
densities will be
(a)
5:2
(b) 10:4
(c)
2.5 :1 (d) 25 :4
Chapter 37 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 37.2 - Which of the following causes the fringes in a...Ch. 37.3 - Using Figure 36.6 as a model, sketch the...Ch. 37.5 - One microscope slide is placed on top of another...Ch. 37 - Prob. 1OQCh. 37 - Four trials of Youngs double-slit experiment are...Ch. 37 - Suppose Youngs double-slit experiment is performed...Ch. 37 - Prob. 4OQCh. 37 - Prob. 5OQCh. 37 - Prob. 6OQCh. 37 - Prob. 7OQ
Ch. 37 - Prob. 8OQCh. 37 - Prob. 9OQCh. 37 - A film of oil on a puddle in a parking lot shows a...Ch. 37 - Prob. 1CQCh. 37 - Prob. 2CQCh. 37 - Prob. 3CQCh. 37 - Prob. 4CQCh. 37 - Prob. 5CQCh. 37 - Prob. 6CQCh. 37 - Prob. 7CQCh. 37 - Prob. 8CQCh. 37 - Prob. 9CQCh. 37 - Two slits are separated by 0.320 mm. A beam of...Ch. 37 - Prob. 2PCh. 37 - A laser beam is incident on two slits with a...Ch. 37 - Prob. 4PCh. 37 - Prob. 5PCh. 37 - Prob. 6PCh. 37 - Prob. 7PCh. 37 - Prob. 8PCh. 37 - Prob. 9PCh. 37 - Light with wavelength 442 nm passes through a...Ch. 37 - Prob. 11PCh. 37 - Prob. 12PCh. 37 - Prob. 13PCh. 37 - Prob. 14PCh. 37 - Prob. 15PCh. 37 - A student holds a laser that emits light of...Ch. 37 - Prob. 17PCh. 37 - Prob. 18PCh. 37 - Prob. 19PCh. 37 - Prob. 20PCh. 37 - Prob. 21PCh. 37 - Prob. 22PCh. 37 - Prob. 23PCh. 37 - Prob. 24PCh. 37 - Prob. 25PCh. 37 - Monochromatic coherent light of amplitude E0 and...Ch. 37 - Prob. 27PCh. 37 - Prob. 28PCh. 37 - Prob. 29PCh. 37 - Prob. 30PCh. 37 - Prob. 31PCh. 37 - Prob. 32PCh. 37 - Prob. 33PCh. 37 - Prob. 34PCh. 37 - Prob. 35PCh. 37 - Prob. 36PCh. 37 - Prob. 37PCh. 37 - Prob. 38PCh. 37 - When a liquid is introduced into the air space...Ch. 37 - Prob. 40PCh. 37 - Prob. 41PCh. 37 - Prob. 42PCh. 37 - Prob. 43PCh. 37 - Prob. 44PCh. 37 - Prob. 45APCh. 37 - Prob. 46APCh. 37 - Prob. 47APCh. 37 - Prob. 48APCh. 37 - Prob. 49APCh. 37 - Prob. 50APCh. 37 - Prob. 51APCh. 37 - In a Youngs interference experiment, the two slits...Ch. 37 - In a Youngs double-slit experiment using light of...Ch. 37 - Prob. 54APCh. 37 - Prob. 55APCh. 37 - Prob. 56APCh. 37 - Prob. 57APCh. 37 - Prob. 58APCh. 37 - Prob. 59APCh. 37 - Prob. 60APCh. 37 - Prob. 61APCh. 37 - Prob. 62APCh. 37 - Prob. 63APCh. 37 - Prob. 64APCh. 37 - Prob. 65APCh. 37 - Prob. 66APCh. 37 - Prob. 67APCh. 37 - Prob. 68APCh. 37 - Prob. 69APCh. 37 - Prob. 70APCh. 37 - Prob. 71CPCh. 37 - Prob. 72CPCh. 37 - Prob. 73CPCh. 37 - Prob. 74CPCh. 37 - Prob. 75CPCh. 37 - Prob. 76CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the necessary condition on the path length difference between two waves that interfere (a) constructively and (b) destructively?arrow_forwardTwo sinusoidal waves with identical wavelengths and amplitudes travel in opposite directions along a string producing a standing wave. The linear mass density of the string is =0.075 kg/m and the tension in the string is FT=5.00 N. The time interval between instances of total destructive interference is t=0.13 s. What is the wavelength of the waves?arrow_forwardTwo waves Y1 = 6.3 sin (3297 t –0.0765 x + 8x) and Y2 = 8.3 sin (3297 t –0.0765 x + 9n) interfere. Compute: (a) the frequency (f) of each wave, and (b) the wavelength (2.) of each wave (All quantities are in SI units)arrow_forward
- Consider two identical interfering waves with wavelength A = 0.4 m travelling in the positive x-direction. The two waves start at the same time but at different positions, x1 and x2 from an observer (x1 > x2). What should the path difference, Ax = x1 - x2, between the starting positions be in order for the two waves to differ in phase by t/6 rad? Ax = 1/50 m O Ax = 1/40 m O Ax = 1/30 m O Ax = 1/60 m O Ax = 1/20 marrow_forward(a) Two loudspeakers A & B emit sound waves in phase. The frequency of waves emitted by each speaker is 660 Hz. A is located at the origin and B is located on the y axis at y= 3 m. A person is standing at position P of coordinate ( 4 m, 3 m). Determine the path difference of sound waves reaching the person. What kind of interference occur at P?Speed of sound in air =330 m/sarrow_forwardWhat is the direction of propagation of the wave de scribed in the wave function * rad y = (0.30 m) sin (12) |t + (10 m-1)x| O (A) left to right O (B) right to left O (C) top to bottom (D)diagonalarrow_forward
- Two harmonic waves with the same amplitude, wavelength, and frequency aretravelling in the same direction. The amplitude of the resultant wave is half theamplitude of the component waves. Find the difference between the phaseconstants of the two component waves, and the difference between the phaseconstant of the resultant wave and that of either component wave.arrow_forwardConsider a superposition of two identical plane waves with phase difference δ. Such interference is constructive for δ=0 rad with maximal intensity 4 times the peak intensity of each wave. For δ=π rad, the interference is destructive and the total intensity becomes zero. Find the maximal intensity, in units of the peak intensity of each wave, for δ= 1.98 rad.arrow_forwardQuantum Physicsarrow_forward
- = A sin (x – wt) and y2(x, t) = A sin (x – wt –5) travel Two progressive waves y1(x, t) in the same direction. Calculate the amplitude and speed of the wave produced as a result of interference of these two waves. Take A = 5 cm, A = 4 m and w = 31.4 Hz. wt – 5) travelarrow_forwardA light wire is tightly stretched with tension F. Transverse traveling waves of amplitude A and wavelength A1 carry average power Pavg,1 0.400W. If the wavelength of the waves is doubled so that d = 2A1, while the tension F and amplitude A are not altered, what then is the average power Pavg,2 carried by the waves?arrow_forwardShow by direct substitution that the exponential Gaussian function defined by ?(x,t) = ae-(bx-ct)^2 satisfies the wave equation: (?2?(?,?))/(?x2) = (1/v2) * (?2?(x,t))/(?t2) if the wave is given by the v = (c/b) and a, b, and c are constants.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY