Concept explainers
(a)
The position of the
(a)
Answer to Problem 20P
The position of the
Explanation of Solution
Write the expression to find the position of the
Here,
Conclusion:
Substitute
Therefore, the position of the
(b)
The tangent of the angle the first order bright fringe makes with respect to the line extending from the point midway between the slits to the center of the central maximum.
(b)
Answer to Problem 20P
The tangent of the angle the first order bright fringe makes with respect to the line extending from the point midway between the slits to the center of the central maximum is
Explanation of Solution
The following figure gives the system description.
Write the expression for the tangent of the angle the first order bright fringe makes with respect to the line extending from the point midway between the slits to the center of the central maximum.
Conclusion:
Substitute
Therefore, the tangent of the angle the first order bright fringe makes with respect to the line extending from the point midway between the slits to the center of the central maximum is
(c)
The
(c)
Answer to Problem 20P
The wavelength of the light is
Explanation of Solution
Write the expression for wavelength of the light.
Here,
Conclusion:
Substitute
Therefore, the wavelength of the light is
(d)
The angle for the 50th-order bright fringe.
(d)
Answer to Problem 20P
The angle for the 50th-order bright fringe is
Explanation of Solution
Write the expression for angle for the 50th-order bright fringe.
Conclusion:
Substitute
Therefore, the angle for the 50th-order bright fringe is
(e)
The position of 50th-order bright fringe.
(e)
Answer to Problem 20P
The position of 50th-order bright fringe is
Explanation of Solution
Write the expression to find the position of 50th-order bright fringe
Here,
Conclusion:
Substitute
Therefore, the position of 50th-order bright fringe is
(f)
The comparison of the answers in part (a) and (e).
(f)
Answer to Problem 20P
The answers in part (a) and (e) are close but are not equal.
Explanation of Solution
The non linearity of the fringes in the screen are the reasons that the two answers are close but do not agree exactly with each other.
Therefore, the answers in part (a) and (e) are close but are not equal.
Want to see more full solutions like this?
Chapter 37 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
- the answer is not 0.39 or 0.386arrow_forwardFind the total capacitance in micro farads of the combination of capacitors shown in the figure below. 2.01 0.30 µF 2.5 µF 10 μF × HFarrow_forwardI do not understand the process to answer the second part of question b. Please help me understand how to get there!arrow_forward
- Rank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative. Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them. ▸ View Available Hint(s) [most negative 91 = +1nC 92 = +1nC 91 = -1nC 93 = +1nC 92- +1nC 93 = +1nC -1nC 92- -1nC 93- -1nC 91= +1nC 92 = +1nC 93=-1nC 91 +1nC 92=-1nC 93=-1nC 91 = +1nC 2 = −1nC 93 = +1nC The correct ranking cannot be determined. Reset Help most positivearrow_forwardPart A Find the x-component of the electric field at the origin, point O. Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz = Η ΑΣΦ ? N/C Submit Part B Now, assume that charge q2 is negative; q2 = -6 nC, as shown in (Figure 2). What is the x-component of the net electric field at the origin, point O? Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz= Η ΑΣΦ ? N/Carrow_forward1. A charge of -25 μC is distributed uniformly throughout a spherical volume of radius 11.5 cm. Determine the electric field due to this charge at a distance of (a) 2 cm, (b) 4.6 cm, and (c) 25 cm from the center of the sphere. (a) = = (b) E = (c)Ẻ = = NC NC NCarrow_forward
- 1. A long silver rod of radius 3.5 cm has a charge of -3.9 ис on its surface. Here ŕ is a unit vector ст directed perpendicularly away from the axis of the rod as shown in the figure. (a) Find the electric field at a point 5 cm from the center of the rod (an outside point). E = N C (b) Find the electric field at a point 1.8 cm from the center of the rod (an inside point) E=0 Think & Prepare N C 1. Is there a symmetry in the charge distribution? What kind of symmetry? 2. The problem gives the charge per unit length 1. How do you figure out the surface charge density σ from a?arrow_forward1. Determine the electric flux through each surface whose cross-section is shown below. 55 S₂ -29 S5 SA S3 + 9 Enter your answer in terms of q and ε Φ (a) s₁ (b) s₂ = -29 (C) Φ զ Ερ (d) SA = (e) $5 (f) Sa $6 = II ✓ -29 S6 +39arrow_forwardNo chatgpt pls will upvotearrow_forward
- the cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forwardstate the difference between vector and scalar quarrow_forward
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning