Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 37, Problem 31P
To determine
The thickness of the oil film.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Red light having a wavelength of 690 nm (in air) is vertically incident on a thin
film of oil that has an index of refraction of 1.19. The film of oil floats above
water (having an index of refraction of 1.30). The red light is brightly reflected.
The minimum (nonzero) thickness of the film of oil is
580 nm.
145 nm.
290 nm.
345 nm.
A thin film of soap with n = 1.40 hanging in the air reflects dominantly red light with λ = 664 nm. Now this film is on a sheet of glass, with n = 1.55. What is the wavelength of the light in air that will now be predominantly reflected?
A 750 nm red light is not reflected in air by a thin film deposited on glass. If the thickness of the film is 150 nm and glass has a refractive index of 1.44, what is a possible value of the index of refraction of the thin film?
1.15
1.25
1.40
1.20
Chapter 37 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 37.2 - Which of the following causes the fringes in a...Ch. 37.3 - Using Figure 36.6 as a model, sketch the...Ch. 37.5 - One microscope slide is placed on top of another...Ch. 37 - Prob. 1OQCh. 37 - Four trials of Youngs double-slit experiment are...Ch. 37 - Suppose Youngs double-slit experiment is performed...Ch. 37 - Prob. 4OQCh. 37 - Prob. 5OQCh. 37 - Prob. 6OQCh. 37 - Prob. 7OQ
Ch. 37 - Prob. 8OQCh. 37 - Prob. 9OQCh. 37 - A film of oil on a puddle in a parking lot shows a...Ch. 37 - Prob. 1CQCh. 37 - Prob. 2CQCh. 37 - Prob. 3CQCh. 37 - Prob. 4CQCh. 37 - Prob. 5CQCh. 37 - Prob. 6CQCh. 37 - Prob. 7CQCh. 37 - Prob. 8CQCh. 37 - Prob. 9CQCh. 37 - Two slits are separated by 0.320 mm. A beam of...Ch. 37 - Prob. 2PCh. 37 - A laser beam is incident on two slits with a...Ch. 37 - Prob. 4PCh. 37 - Prob. 5PCh. 37 - Prob. 6PCh. 37 - Prob. 7PCh. 37 - Prob. 8PCh. 37 - Prob. 9PCh. 37 - Light with wavelength 442 nm passes through a...Ch. 37 - Prob. 11PCh. 37 - Prob. 12PCh. 37 - Prob. 13PCh. 37 - Prob. 14PCh. 37 - Prob. 15PCh. 37 - A student holds a laser that emits light of...Ch. 37 - Prob. 17PCh. 37 - Prob. 18PCh. 37 - Prob. 19PCh. 37 - Prob. 20PCh. 37 - Prob. 21PCh. 37 - Prob. 22PCh. 37 - Prob. 23PCh. 37 - Prob. 24PCh. 37 - Prob. 25PCh. 37 - Monochromatic coherent light of amplitude E0 and...Ch. 37 - Prob. 27PCh. 37 - Prob. 28PCh. 37 - Prob. 29PCh. 37 - Prob. 30PCh. 37 - Prob. 31PCh. 37 - Prob. 32PCh. 37 - Prob. 33PCh. 37 - Prob. 34PCh. 37 - Prob. 35PCh. 37 - Prob. 36PCh. 37 - Prob. 37PCh. 37 - Prob. 38PCh. 37 - When a liquid is introduced into the air space...Ch. 37 - Prob. 40PCh. 37 - Prob. 41PCh. 37 - Prob. 42PCh. 37 - Prob. 43PCh. 37 - Prob. 44PCh. 37 - Prob. 45APCh. 37 - Prob. 46APCh. 37 - Prob. 47APCh. 37 - Prob. 48APCh. 37 - Prob. 49APCh. 37 - Prob. 50APCh. 37 - Prob. 51APCh. 37 - In a Youngs interference experiment, the two slits...Ch. 37 - In a Youngs double-slit experiment using light of...Ch. 37 - Prob. 54APCh. 37 - Prob. 55APCh. 37 - Prob. 56APCh. 37 - Prob. 57APCh. 37 - Prob. 58APCh. 37 - Prob. 59APCh. 37 - Prob. 60APCh. 37 - Prob. 61APCh. 37 - Prob. 62APCh. 37 - Prob. 63APCh. 37 - Prob. 64APCh. 37 - Prob. 65APCh. 37 - Prob. 66APCh. 37 - Prob. 67APCh. 37 - Prob. 68APCh. 37 - Prob. 69APCh. 37 - Prob. 70APCh. 37 - Prob. 71CPCh. 37 - Prob. 72CPCh. 37 - Prob. 73CPCh. 37 - Prob. 74CPCh. 37 - Prob. 75CPCh. 37 - Prob. 76CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A beam of 580-nm light passes through two closely spaced glass plates at close to normal incidence as shown in Figure P37.35. For what minimum nonzero value of the plate separation d is the transmitted light bright?arrow_forward(a) A narrow beam of light containing yellow (580 nm) and green (550 nm} wavelengths goes from polystyrene to air, striking the surface at a 30.0° incident angle. What is the angle between the colors when they emerge? (b) How far would they have to travel to be separated by 1.00 mm?arrow_forwardFigure P36.53 shows two thin glass plates separated by a wire with a square cross section of side length w, forming an air wedge between the plates. What is the edge length w of the wire if 42 dark fringes are observed from above when 589-nm light strikes the wedge at normal incidence? FIGURE P36.53arrow_forward
- A monochromatic beam of light of wavelength 500 nm illuminates a double slit having a slit separation of 2.00 105 m. What is the angle of the second-order bright fringe? (a) 0.050 0 rad (b) 0.025 0 rad (c) 0.100 rad (d) 0.250 rad (e) 0.010 0 radarrow_forwardA Fraunhofer diffraction pattern is produced on a screen located 1.00 m from a single slit. If a light source of wavelength 5.00 107 m is used and the distance from the center of the central bright fringe to the first dark fringe is 5.00 103 m, what is the slit width? (a) 0.010 0 mm (b) 0.100 mm (c) 0.200 mm (d) 1.00 mm (e) 0.005 00 mmarrow_forwardA thin film of oil (n = 1.28) is located on smooth, wet pavement. When viewed perpendicular to the pavement, the film reflects most strongly red light at 640 nm and reflects no blue light at 427 nm. How thick is the oil film?arrow_forward
- Problem 8 :We wish to coat a flat slab of glass (n 1.5) with a %3D transparent material (n-1.25) so that light of wavelength 620nm (in vacuum) incident normally is not reflected. What should be the minimum thickness of the coating? Air=1 Film= Glass=1.5 1.25 a 111arrow_forwardThe yellow D, line from a sodium discharge lamp has a vacuum wavelength of 589.5923 nm. Suppose such light falls at 30.00° on the surface of a film of soybean oil (n = 1.4729) suspended (within a wire frame) in air. What minimum thickness should the film have in some region if that area is to strongly reflect the light? %Darrow_forwardMonochromatic light (l = 500 nm) is incident on a soap bubble (n = 1.40). What is the wavelength of the light (in nm) in the bubble film?arrow_forward
- Problem 8 :We wish to coat a flat slab of glass (n 1.5) with a transparent material (n-1.25) so that light of wavelength 620nm (in vacuum) incident normally is not reflected. What should be the minimum thickness of the coating? Air=1 Film= Glass=1.5 r2 1.25 ri a 111arrow_forwardTwo waves of light in air, of wavelength 600.0 nm, are initially in phase. They then travel through plastic layers as shown in the figure below, with L1 = 3.85 µm, L2 = 3.35 µm, n, = 1.40, and n2 = 1.61. What multiple of A gives their phase difference after they have both emerged from the layers? Give absolute value. – Lg- R2 L1 Number Unitsarrow_forwardAn oil film with refractive index 1.48 and thickness 290 nm is floating on water and illuminated with white light at normal incidence. What is the wavelength of the dominant color in the reflected light?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY