Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 37, Problem 14P
To determine
The distance between the doors.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A riverside warehouse has several small doors facing the river. Two of these doors are open as shown in the figure below. The walls of the warehouse are lined with sound-absorbing material. Two people stand at a distance L = 120 m from the wall with the open doors. Person A stands
along a line passing through the midpoint between the open doors, and person B stands a distance y = 20 m to his side. A boat on the river sounds its horn. To person A, the sound is loud and clear. To person B, the sound is barely audible. The principal wavelength of the sound waves is
1.70 m. Assuming person B is at the position of the first minimum, determine the distance d between the doors, center to center.
Closed door
B
- Open door
y
`Open door
11. A riverside warehouse has two open doors, as in
Figure P24.11. Its interior is lined with a sound-absorbing
material. A boat on the river sounds its horn. To per-
son A, the sound is loud and clear. To person B, the
sound is barely audible. The principal wavelength of
the sound waves is 3.00 m. Assuming person B is at
the position of the first minimum, determine the dis-
tance between the doors, center to center.
В
- Open door
20.0 m
d
Open door
150 m-
Figure P24.11
Figure P24.69 shows
d-
radio-wave transmitter and
a receiver, both h = 50.0 m
above the ground and d =
6.00 X 102 m apart. The
receiver can receive signals
directly from the transmit-
ter and indirectly from
signals that bounce off the
ground. If the ground is
level between the transmitter and receiver and a /2 phase
shift occurs upon reflection, determine the longest wave-
lengths that interfere (a) constructively and (b) destructively.
Transmitter
Receiver
Figure P24.69
Chapter 37 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 37.2 - Which of the following causes the fringes in a...Ch. 37.3 - Using Figure 36.6 as a model, sketch the...Ch. 37.5 - One microscope slide is placed on top of another...Ch. 37 - Prob. 1OQCh. 37 - Four trials of Youngs double-slit experiment are...Ch. 37 - Suppose Youngs double-slit experiment is performed...Ch. 37 - Prob. 4OQCh. 37 - Prob. 5OQCh. 37 - Prob. 6OQCh. 37 - Prob. 7OQ
Ch. 37 - Prob. 8OQCh. 37 - Prob. 9OQCh. 37 - A film of oil on a puddle in a parking lot shows a...Ch. 37 - Prob. 1CQCh. 37 - Prob. 2CQCh. 37 - Prob. 3CQCh. 37 - Prob. 4CQCh. 37 - Prob. 5CQCh. 37 - Prob. 6CQCh. 37 - Prob. 7CQCh. 37 - Prob. 8CQCh. 37 - Prob. 9CQCh. 37 - Two slits are separated by 0.320 mm. A beam of...Ch. 37 - Prob. 2PCh. 37 - A laser beam is incident on two slits with a...Ch. 37 - Prob. 4PCh. 37 - Prob. 5PCh. 37 - Prob. 6PCh. 37 - Prob. 7PCh. 37 - Prob. 8PCh. 37 - Prob. 9PCh. 37 - Light with wavelength 442 nm passes through a...Ch. 37 - Prob. 11PCh. 37 - Prob. 12PCh. 37 - Prob. 13PCh. 37 - Prob. 14PCh. 37 - Prob. 15PCh. 37 - A student holds a laser that emits light of...Ch. 37 - Prob. 17PCh. 37 - Prob. 18PCh. 37 - Prob. 19PCh. 37 - Prob. 20PCh. 37 - Prob. 21PCh. 37 - Prob. 22PCh. 37 - Prob. 23PCh. 37 - Prob. 24PCh. 37 - Prob. 25PCh. 37 - Monochromatic coherent light of amplitude E0 and...Ch. 37 - Prob. 27PCh. 37 - Prob. 28PCh. 37 - Prob. 29PCh. 37 - Prob. 30PCh. 37 - Prob. 31PCh. 37 - Prob. 32PCh. 37 - Prob. 33PCh. 37 - Prob. 34PCh. 37 - Prob. 35PCh. 37 - Prob. 36PCh. 37 - Prob. 37PCh. 37 - Prob. 38PCh. 37 - When a liquid is introduced into the air space...Ch. 37 - Prob. 40PCh. 37 - Prob. 41PCh. 37 - Prob. 42PCh. 37 - Prob. 43PCh. 37 - Prob. 44PCh. 37 - Prob. 45APCh. 37 - Prob. 46APCh. 37 - Prob. 47APCh. 37 - Prob. 48APCh. 37 - Prob. 49APCh. 37 - Prob. 50APCh. 37 - Prob. 51APCh. 37 - In a Youngs interference experiment, the two slits...Ch. 37 - In a Youngs double-slit experiment using light of...Ch. 37 - Prob. 54APCh. 37 - Prob. 55APCh. 37 - Prob. 56APCh. 37 - Prob. 57APCh. 37 - Prob. 58APCh. 37 - Prob. 59APCh. 37 - Prob. 60APCh. 37 - Prob. 61APCh. 37 - Prob. 62APCh. 37 - Prob. 63APCh. 37 - Prob. 64APCh. 37 - Prob. 65APCh. 37 - Prob. 66APCh. 37 - Prob. 67APCh. 37 - Prob. 68APCh. 37 - Prob. 69APCh. 37 - Prob. 70APCh. 37 - Prob. 71CPCh. 37 - Prob. 72CPCh. 37 - Prob. 73CPCh. 37 - Prob. 74CPCh. 37 - Prob. 75CPCh. 37 - Prob. 76CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Figure P36.35 shows a radio-wave transmitter and a receiver separated by a distance d = 50.0 m and both a distance h = 35.0 m above the ground. The receiver can receive signals both directly from the transmitter and indirectly from signals that reflect from the ground. Assume the ground is level between the transmitter and receiver and a 180 phase shift occurs upon reflection. Determine the longest wavelengths that interfere (a) constructively and (b) destructively. Figure P36.35 Problems 35 and 36.arrow_forwardTwo antennas located at points A and B are broadcasting radio waves of frequency 104.0 MHz. The signals start in phase with each other. The two antennas are separated by a distance d = 8.7 m. An observer is located at point P on the x axis, a distance x = 110.0 m from antenna A. The points A, P, and B form a right triangle. What is the phase difference between the waves arriving at P from antennas A and B? Enter your answer in radiansarrow_forwardTwo radio antennas radiating in phase are positioned at points A and B, separated by a distance of 200 m (Figure P35.43). Radio waves have a frequency of 5.80 MHz. A radio receiver is moved from point B along a line perpendicular to the line connecting A to B (line BC in the figure)At what distances B will there be destructive interference?Note: The distance between the receiver and the sources is not great compared to the separation of the sources.arrow_forward
- Two radio antennas separated by d = 272 m as shown in the figure below simultaneously broadcast identical signals at the same wavelength. A car travels due north along a straight line at position x = 1150 m from the center point between the antennas, and its radio receives the signals. Note: Do not use the small-angle approximation in this problem. d (a) If the car is at the position of the second maximum after that at point O when it has traveled a distance y = 400 m northward, what is the wavelength of the signals? m (b) How much farther must the car travel from this position to encounter the next minimum in reception? marrow_forwardA riverside warehouse has two open doors, as in the figure below. Its interior is lined with a sound-absorbing material. A boat on the river sounds its horn. To person A, the sound is loud and clear. To person B, the sound is barely audible. The principal wavelength of the sound waves is 2.70 m. Assuming person B is at the position of the first minimum, determine the distance (in m) between the doors, center to center. Open door 20.0 m Open door 150 marrow_forwardA person looks down at a puddle made of a thin film of gasoline (n = 1.427) floating on top of some water (n=1.333). The surface looks like a swirl of many different colors. a) They note that a portion of the puddle looks cyan to them, which indicates that less red light (4.62 x 1014 Hz) is reaching their eyes compared to green and blue light. What is the minimum thickness of this portion of the gasoline film? b) They note that a different portion of the puddle looks blue to them, which indicates that more blue light (6.60 x 1014 Hz) is reaching their eyes compared to red and green light. What is the minimum thickness of this portion of the gasoline film?arrow_forward
- You are standing against the wall near a corner of a large building. A friend is standing against the wall that is around the corner from you. You can’t see your friend. How is it that you can hear her when she talks to you?arrow_forwardA light with a wavelength of 500 nm (red color) travels from a laser to a photocell in 15 ns. When a thin glass slab is placed normally in front of the photocell it takes the light 18 ns to travel from the laser to the photocell? When the Laser beam passes through the glass slab it changes to blue in color (λ = 660 nm). What is the thickness of the glass slab?arrow_forwardThe entrance to a large lecture room consists of two side-by-side doors, one hinged on the left, and the other hinged on the right. Each door is 0.790 m wide. Sound of frequency 870 Hz is coming through the entrance from within the room. Take the speed of sound to be 340 m/s. What is the diffraction angle of the sound after it passes through the doorway when one door is open.arrow_forward
- Radio waves from a star, of wavelength 2.50 3 102 m, reach a radio telescope by two separate paths, as shown in Figure P24.13. One is a direct path to the receiver, which is situated on the edge of a cliff by the ocean. The second is by reflection off the water. The first minimum of destructive interference occurs when the star is u 5 25.0° above the horizon. Find the height of the cliff. (Assume no phase change on reflection.)arrow_forwardA helium-neon laser beam has a wavelength in air of 633 nm. It takes 1.38 ns for the light to travel through 30.0 cm of an unknown liquid. What is the wavelength of the laser beam in the liquid?arrow_forwardAn investigator finds a fiber at a crime scene that he wishes to use as evidence against a suspect. He gives the fiber to a technician to test the properties of the fiber. To measure the diameter of the fiber, the technician places it between two flat glass plates at their ends as in Figure P24.24. When the plates, of length 14.0 cm, are illuminated from above with light of wavelength 6.50 x 102 nm, she observes bright interference bands separated by 0.580 mm. What is the diameter of the fiber?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY