Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 37, Problem 49AP
To determine
The diameter of the fiber.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
35. Figure P36.35 shows a radio-wave transmitter and a receiver
separated by a distance d - 50.0 m and both a distance
A - 35.0 m above the ground. The receiver can receive sig-
nals both directly from the transmitter and indirectly from
signals that reflect from the ground. Assume the ground is
level between the transmitter and receiver and a 180° phase
shift occurs upon reflection. Determine the longest wave-
lengths that interfere (a) constructively and (b) destructively.
Transmitter
Recriver
Figure P36.35 Problems 35 and 36.
=
35. Figure P36.35 shows a radio-wave transmitter and a receiver
separated by a distance d 50.0 m and both a distance
h =
35.0 m above the ground. The receiver can receive sig-
nals both directly from the transmitter and indirectly from
signals that reflect from the ground. Assume the ground is
level between the transmitter and receiver and a 180° phase
shift occurs upon reflection. Determine the longest wave-
lengths that interfere (a) constructively and (b) destructively.
h
Transmitter
d
Receiver
Figure P36.35 Problems 35 and 36.
An investigator finds a fiber at a crime scene that he wishes to use as evidence against a suspect. He gives the fiber to a technician to test the properties of the fiber. To measure the diameter of the fiber, the technician places it between two flat glass plates at their ends as in Figure P24.24. When the plates, of length 14.0 cm, are illuminated from above with light of wavelength 6.50 x 102 nm, she observes bright interference bands separated by 0.580 mm. What is the diameter of the fiber?
Chapter 37 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 37.2 - Which of the following causes the fringes in a...Ch. 37.3 - Using Figure 36.6 as a model, sketch the...Ch. 37.5 - One microscope slide is placed on top of another...Ch. 37 - Prob. 1OQCh. 37 - Four trials of Youngs double-slit experiment are...Ch. 37 - Suppose Youngs double-slit experiment is performed...Ch. 37 - Prob. 4OQCh. 37 - Prob. 5OQCh. 37 - Prob. 6OQCh. 37 - Prob. 7OQ
Ch. 37 - Prob. 8OQCh. 37 - Prob. 9OQCh. 37 - A film of oil on a puddle in a parking lot shows a...Ch. 37 - Prob. 1CQCh. 37 - Prob. 2CQCh. 37 - Prob. 3CQCh. 37 - Prob. 4CQCh. 37 - Prob. 5CQCh. 37 - Prob. 6CQCh. 37 - Prob. 7CQCh. 37 - Prob. 8CQCh. 37 - Prob. 9CQCh. 37 - Two slits are separated by 0.320 mm. A beam of...Ch. 37 - Prob. 2PCh. 37 - A laser beam is incident on two slits with a...Ch. 37 - Prob. 4PCh. 37 - Prob. 5PCh. 37 - Prob. 6PCh. 37 - Prob. 7PCh. 37 - Prob. 8PCh. 37 - Prob. 9PCh. 37 - Light with wavelength 442 nm passes through a...Ch. 37 - Prob. 11PCh. 37 - Prob. 12PCh. 37 - Prob. 13PCh. 37 - Prob. 14PCh. 37 - Prob. 15PCh. 37 - A student holds a laser that emits light of...Ch. 37 - Prob. 17PCh. 37 - Prob. 18PCh. 37 - Prob. 19PCh. 37 - Prob. 20PCh. 37 - Prob. 21PCh. 37 - Prob. 22PCh. 37 - Prob. 23PCh. 37 - Prob. 24PCh. 37 - Prob. 25PCh. 37 - Monochromatic coherent light of amplitude E0 and...Ch. 37 - Prob. 27PCh. 37 - Prob. 28PCh. 37 - Prob. 29PCh. 37 - Prob. 30PCh. 37 - Prob. 31PCh. 37 - Prob. 32PCh. 37 - Prob. 33PCh. 37 - Prob. 34PCh. 37 - Prob. 35PCh. 37 - Prob. 36PCh. 37 - Prob. 37PCh. 37 - Prob. 38PCh. 37 - When a liquid is introduced into the air space...Ch. 37 - Prob. 40PCh. 37 - Prob. 41PCh. 37 - Prob. 42PCh. 37 - Prob. 43PCh. 37 - Prob. 44PCh. 37 - Prob. 45APCh. 37 - Prob. 46APCh. 37 - Prob. 47APCh. 37 - Prob. 48APCh. 37 - Prob. 49APCh. 37 - Prob. 50APCh. 37 - Prob. 51APCh. 37 - In a Youngs interference experiment, the two slits...Ch. 37 - In a Youngs double-slit experiment using light of...Ch. 37 - Prob. 54APCh. 37 - Prob. 55APCh. 37 - Prob. 56APCh. 37 - Prob. 57APCh. 37 - Prob. 58APCh. 37 - Prob. 59APCh. 37 - Prob. 60APCh. 37 - Prob. 61APCh. 37 - Prob. 62APCh. 37 - Prob. 63APCh. 37 - Prob. 64APCh. 37 - Prob. 65APCh. 37 - Prob. 66APCh. 37 - Prob. 67APCh. 37 - Prob. 68APCh. 37 - Prob. 69APCh. 37 - Prob. 70APCh. 37 - Prob. 71CPCh. 37 - Prob. 72CPCh. 37 - Prob. 73CPCh. 37 - Prob. 74CPCh. 37 - Prob. 75CPCh. 37 - Prob. 76CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A beam of 580-nm light passes through two closely spaced glass plates at close to normal incidence as shown in Figure P27.23. For what minimum nonzero value of the plate separation d is the transmitted light bright?arrow_forward36. Figure P36.35 shows a radio-wave transmitter and a receiver separated by a distance d and both a distance h above the ground. The receiver can receive signals both directly from the transmitter and indirectly from signals that reflect from the ground. Assume the ground is level between the transmitter and receiver and a 180* phase shift occurs upon reflection. Determine the longest wavelengths that interfere (a) constructively and (b) destructively.arrow_forwardIn Figure P37.18, let L = 120 cm and d = 0.250 cm. The slits are illuminated with coherent 600-nm light. Calculate the distance y from the central maximum for which the average intensity on the screen is 75.0% of the maximum.arrow_forward
- Your friend has been given a laser for her birthday. Unfortunately, she did not receive a manual with it and so she doesn't know the wavelength that it emits. You help her by performing a double-slit experiment, with slits separated by 0.36 mm. You find that the two m=1 bright fringes are 5.5 mm apart on a screen 1.6 mm from the slits. What is the wavelength the laser emits?arrow_forwardConsider a light wave passing through a slit and propagating toward a distant screen. Figure P37.53 shows the intensity variation for the pattern on the screen. Give a mathematical argument that more than 90% of the transmitted energy is in the central maximum of the diffraction pattern. Sugges- tion: You are not expected to calculate the precise percent- age, but explain the steps of your reasoning. You may use the identification 1 1 8 Imax asine -3T -27 -T 27 37 A Figure P37.53 ||arrow_forwardFigure P24.69 shows d- radio-wave transmitter and a receiver, both h = 50.0 m above the ground and d = 6.00 X 102 m apart. The receiver can receive signals directly from the transmit- ter and indirectly from signals that bounce off the ground. If the ground is level between the transmitter and receiver and a /2 phase shift occurs upon reflection, determine the longest wave- lengths that interfere (a) constructively and (b) destructively. Transmitter Receiver Figure P24.69arrow_forward
- Solar cells are an example of anti-reflective coatings. Let a silicon solar cell (n = 3.45) coated with a layer of silicon dioxide (n = 1.45). Calculate the minimum coating thickness that will minimize the reflection of the light with wavelength of 650 nm?arrow_forwardOne of the round faces of a solid 3.25 m cylindrical plastic tube is covered with a thin black coating that completely blocks light. The opposite side is covered in a fluorescent coating that glows when light hits it. In the center of the black face, two parallel, straight and thin slits are made, 0.225 mm apart. When laser light with a wavelength of 632.8 nm and perpendicular to the black face passes through these slits, it is observed that the central bright band on the opposite face is 5.82 mm wide, measured between the dark bands that limit it to each side, What is the index of refraction of the plastic?arrow_forwardYou are working in an optical research laboratory. One of your projects involves the use of a double slit through which you pass orange laser light of wavelength 590 nm. Unfortunately, because of budget cuts, there are a lot of researchers in the same room, with lots of equipment stuffed in theroom, and, in particular, lots of laser beams flying around the room. One day, you find that a second laser beam of unknown origin and different color is entering your double slit along with your orange beam and you are seeing an interference pattern that is the sum of those due to the twobeams. You notice that the combined pattern is pretty much a mess, but wait! The m = 3 maximum of your orange laser beam pattern is pure; there is absolutely no mixture of the other color at that point. From this fact, you determine the wavelength of the offending laser light so that you can figure out which other researcher to ask to modify the aiming of his laser.arrow_forward
- A flat piece of glass is held stationary and horizontal above the highly polished, flat top end of a 8.50-cm-long vertical metal rod that has its lower end rigidly fixed. The thin film of air between the rod and glass is observed to be bright by reflected light when it is illuminated by light of wavelength 530 nm. As the temperature is slowly increased by 21.5°C, the film changes from bright to dark and back to bright 200 times. What is the coefficient of linear expansion of the metal? °c-1arrow_forwardA broad beam of light of wavelength 527 nm is sent directly downward through the glass plate (n = 1.46) in Figure (a). That plate and a plastic plate (n = 1.17) form a thin wedge of air that acts as a thin film. An observer looking down through the top plate sees the fringe pattern shown in Figure (b), with dark fringes centered on the ends. (a) What is the thickness (in m) of wedge at the right end? (b) How many dark fringes will the observer see if the air between the plates is replaced with a liquid with n = 1.26? Incident light (a) Number (b) Number i Units Units (a) (b)arrow_forwardLaser light of wavelength 460 nmnm is traveling in air and shines at normal incidence onto the flat end of a transparent plastic rod that has nn = 1.30. The end of the rod has a thin coating of a transparent material that has refractive index 1.75. a)What is the minimum (nonzero) thickness of the coating for which there is maximum transmission of the light into the rod? b)What is the minimum (nonzero) thickness of the coating for which transmission into the rod is minimized?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY