DeGarmo's Materials and Processes in Manufacturing
12th Edition
ISBN: 9781118987674
Author: J. T. Black, Ronald A. Kohser
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 35, Problem 39RQ
In what ways might welding create geometric notches in a welded structure?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 1
8 in.
in.
PROBLEM 15.109
Knowing that at the instant shown crank BC has a constant angular
velocity of 45 rpm clockwise, determine the acceleration (a) of Point A,
(b) of Point D.
8 in.
Answer: convert rpm to rad/sec first. (a). -51.2j in/s²; (b). 176.6 i + 50.8 j in/s²
Problem 4
The semicircular disk has a radius of 0.4 m. At one instant, when 0-60°, it is rotating
counterclockwise at 0-4 rad/s, which is increasing in the same direction at 1 rad/s². Find the
velocity and acceleration of point B at this instant. (Suggestion: Set up relative velocity and
relative acceleration that way you would for a no-slip disk; remember what I told you to memorize
on the first day of class.) (Answer: B = −2.98î - 0.8ĵ m/s, ãB = 2.45î - 5.74ĵ m/s²)
B
0.4 m
y
X
A
C
C
2r
A
2r
B
B
(a)
(b)
Problem 3
Refer to (b) of the figure shown above. The disk OA is now rolling with no slip at a constant angular
velocity of w. Find the angular velocity and angular acceleration of link AB and BC. (Partial Answers:
WBC = 2wk, AB = w²k)
Chapter 35 Solutions
DeGarmo's Materials and Processes in Manufacturing
Ch. 35 - What types of design features favor manufacture as...Ch. 35 - What types of manufacturing processes fall under...Ch. 35 - Define welding.Ch. 35 - What conditions are required to produce an ideal...Ch. 35 - What are some of the ways in which welding...Ch. 35 - What are some possible problems associated with...Ch. 35 - What are the three primary aspects required to...Ch. 35 - How are welding processes identified by the...Ch. 35 - What is thermal cutting?Ch. 35 - What are some of the common types of weld defects?
Ch. 35 - What are the four basic types of fusion welds?Ch. 35 - What are some of the common edge configurations...Ch. 35 - What is the role of an insert in welding?Ch. 35 - What types of weld joints commonly employ fillet...Ch. 35 - What are the five basic joint tvpes for fusion...Ch. 35 - What are some of the factors that influence the...Ch. 35 - Why is it important to consider welded products as...Ch. 35 - How does the fracture resistance and temperature...Ch. 35 - How might excessive rigidity actually be a...Ch. 35 - What is autogenous welding?Ch. 35 - In what way is the weld-pool segment of a fusion...Ch. 35 - Why is it possible for the fusion zone to have a...Ch. 35 - Why is it not uncommon for the selected filler...Ch. 35 - What are some of the defects or problems that can...Ch. 35 - Why can the material properties vary widely within...Ch. 35 - What are some of the structure and property...Ch. 35 - Why do most welding failures occur in the...Ch. 35 - Discuss the various regions within the...Ch. 35 - What are some of the characteristics and...Ch. 35 - What process features can increase the size of the...Ch. 35 - What are some of the difficulties or limitations...Ch. 35 - What is the purpose of pre- and postheating in...Ch. 35 - What heat-related metallurgical effects can...Ch. 35 - What causes weld-induced residual stresses?Ch. 35 - What is the cause of reaction-type residual...Ch. 35 - How are reaction stresses affected by the distance...Ch. 35 - What are some of the techniques that can reduce...Ch. 35 - How can the surfaces of weldments be put into...Ch. 35 - In what ways might welding create geometric...Ch. 35 - 40. Why might a welded structure warp if the...Ch. 35 - Why might a stress relief heat treatment be...Ch. 35 - What are some of the techniques that can be...Ch. 35 - Why are the terms weldability and joinability...Ch. 35 - Prob. 1PCh. 35 - Two pieces of AISI 1025 steel are being...Ch. 35 - Figure 35.A schematically depicts the design of a...Ch. 35 - Investigate and summarize some of the important...Ch. 35 - What do you foresee as the major difficulties when...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
You cannot have both keyword arguments and non-keyword arguments in a function call.
Starting Out with Python (4th Edition)
Write a function called showReading. It should accept a Reading structure variable (see Problem 21) as its argu...
Starting Out with C++ from Control Structures to Objects (9th Edition)
Describe two properties that each candidate key must satisfy.
Modern Database Management
T F: A named constants value can be changed by a programming statement while the program is running.
Starting Out With Visual Basic (8th Edition)
Fill in the blanks in each of the following statements: A location in the computers memory that may contain dif...
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
A 100-mm-long rod has a diameter of 15 mm. If an axial tensile load of 10 kN is applied to it, determine the ch...
Mechanics of Materials (10th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Problem 2 Refer to (a) of the figure shown below, where the disk OA rotates at a constant angular velocity of w. Find the angular velocity and angular acceleration of link AB and link BC. (Partial Answers: WBC = wk, AB = w²k) A 2r C B (a) A 2r B (b)arrow_forwardExample Two rotating rods are connected by slider block P. The rod attached at A rotates with a constant clockwise angular velocity WA. For the given data, determine for the position shown (a) the angular velocity of the rod attached at B, (b) the relative velocity of slider block P with respect to the rod on which it slides. b = 8 in., w₁ = 6 rad/s. Given: b = 8 in., WA = 6 rad/s CW constant Find: (a). WBE (b). Vp/Frame E 60° 20° Barrow_forwardY F1 α В X F2 You and your friends are planning to move the log. The log. needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a = 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? Your friends had to pull at: magnitude in Newton, F2 = direction in degrees, ẞ = N degarrow_forward
- 100 As a spring is heated, its spring constant decreases. Suppose the spring is heated and then cooled so that the spring constant at time t is k(t) = t sin + N/m. If the mass-spring system has mass m = 2 kg and a damping constant b = 1 N-sec/m with initial conditions x(0) = 6 m and x'(0) = -5 m/sec and it is subjected to the harmonic external force f (t) = 100 cos 3t N. Find at least the first four nonzero terms in a power series expansion about t = 0, i.e. Maclaurin series expansion, for the displacement: • Analytically (hand calculations) Creating Simulink Model Plot solutions for first two, three and four non-zero terms as well as the Simulink solution on the same graph for the first 15 sec. The graph must be fully formatted by code.arrow_forwardTwo springs and two masses are attached in a straight vertical line as shown in Figure Q3. The system is set in motion by holding the mass m₂ at its equilibrium position and pushing the mass m₁ downwards of its equilibrium position a distance 2 m and then releasing both masses. if m₁ = m² = 1 kg, k₁ = 3 N/m and k₂ = 2 N/m. (y₁ = 0) www k₁ = 3 Jm₁ = 1 k2=2 www (Net change in spring length =32-31) (y₂ = 0) m₂ = 1 32 32 System in static equilibrium System in motion Figure Q3 - Coupled mass-spring system Determine the equations of motion y₁ (t) and y₂(t) for the two masses m₁ and m₂ respectively: Analytically (hand calculations) Using MATLAB Numerical Functions (ode45) Creating Simulink Model Produce an animation of the system for all solutions for the first minute.arrow_forwardTwo large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure Q1). The liquid inside each tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of 6 L/min. The diluted solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If, initially, tank A contains pure water and tank B contains 20 kg of salt. A 6 L/min 0.2 kg/L x(t) 100 L 4 L/min x(0) = 0 kg 3 L/min 1 L/min B y(t) 100 L y(0) = 20 kg 2 L/min Figure Q1 - Mixing problem for interconnected tanks Determine the mass of salt in each tank at time t≥ 0: Analytically (hand calculations) Using MATLAB Numerical Functions (ode45) Creating Simulink Model Plot all solutions on the same graph for the first 15 min. The graph must be fully formatted by code.arrow_forward
- 5. Estimate the friction pressure gradient in a 10.15 cm bore unheated horizontal pipe for the following conditions: Fluid-propylene Pressure 8.175 bar Temperature-7°C Mass flow of liquid-2.42 kg/s. Density of liquid-530 kg/m³ Mass flow of vapour-0.605 kg/s. Density of vapour-1.48 kg/m³arrow_forwardDescribe the following HVAC systems. a) All-air systems b) All-water systems c) Air-water systems Graphically represent each system with a sketch.arrow_forwardTwo large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure Q1). The liquid inside each tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of 6 L/min. The diluted solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If, initially, tank A contains pure water and tank B contains 20 kg of salt. A 6 L/min 0.2 kg/L x(t) 100 L 4 L/min x(0) = 0 kg 3 L/min 1 L/min B y(t) 100 L y(0) = 20 kg 2 L/min Figure Q1 - Mixing problem for interconnected tanks Determine the mass of salt in each tank at time t≥ 0: Analytically (hand calculations) Using MATLAB Numerical Functions (ode45) Creating Simulink Model Plot all solutions on the same graph for the first 15 min. The graph must be fully formatted by code.arrow_forward
- ased on the corresponding mass flow rates (and NOT the original volumetric flow rates) determine: a) The mass flow rate of the mixed air (i.e., the combination of the two flows) leaving the chamber in kg/s. b) The temperature of the mixed air leaving the chamber. Please use PyscPro software for solving this question. Notes: For part (a), you will first need to find the density or specific volume for each state (density = 1/specific volume). The units the 'v' and 'a' are intended as subscripts: · kgv = kg_v = kgv = kilogram(s) [vapour] kga = kg_a =kga = kilogram(s) [air]arrow_forwardThe answers to this question s wasn't properly given, I need expert handwritten solutionsarrow_forwardI need expert handwritten solutions to this onlyarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning
Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Metal Joining Process-Welding, Brazing and Soldering; Author: Toc H Kochi;https://www.youtube.com/watch?v=PPT5_fDSzGY;License: Standard YouTube License, CC-BY