Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 34, Problem 34.75AP
(a)
To determine
The projected area over which the planet absorbs the star light from Gliese
(b)
To determine
The radiate area of the planet.
(c)
To determine
The radius of the planet’s orbit.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A pulsar is a type of rotating neutron star that emits a beam of electromagnetic radiation. Imagine a pulsar that is moving toward Earth at a speed of 875.500 km/s. It emits mostly radio waves with a wavelength (at the source) of 124.000 cm. What is the observed wavelength of this radiation on Earth? (Assume the Earth is stationary. Consider the speed of light c = 3.00000 108 m/s. Give your answer to at least six significant figures.)______________ cm
4. The sun has a mass of Mo=2.0 x 1030 kg and it radiates P = 3.8 x 1026 W in the
form of electromagnetic radiation. The gravitational constant is G = 6.7 x 10-11 N-
(a) Find expressions for the gravitational and electromagnetic forces on a
sphere of radius r which is located a distance R from the center of the
sun, assuming that all of the electromagnetic radiation incident on the
sphere is absorbed, and that the sphere is composed of material with a
density of p=5 g/cm³.
(b) For what value of r are these forces equal? I would like for you to calculate
the actual number for this part.
44°F
Search
Sunny
TAB
CAPS LOCK
E
3
L
%
S
T
བ ༥ ཇ་ཥ ་
F
9
YUEOPL
K
CTRL
SHIFT
NVIDIA
GEFORCE
RTX
N
ALT
x
C
B
m
BACKSPACE
5:44 PM
3/24/2024
DELETE
PGON
Scientists are working on a new technique to kill cancer cells by zapping them
with ultrahigh-energy (in the range of 1.00×1012 W) pulses of light that last for
an extremely short time (a few nanoseconds). These short pulses scramble the
interior of a cell without causing it to explode, as long pulses would do. We can
model a typical such cell as a disk 5.00 μm in diameter, with the pulse lasting
for 4.00 ns with an average power of 2.00×1012 W. We shall assume that the
energy is spread uniformly over the faces of 100 cells for each pulse.
I 1.00×1021 W/m²
Submit Previous Answers
Part C
Correct
What is the maximum value of the electric field in the pulse?
ΜΕ ΑΣΦ
Emax
Submit
Request Answer
Part D
?
V/m
What is the maximum value of the magnetic field in the pulse?
ΜΕ ΑΣΦ
Bmax =
Submit
Request Answer
?
T
Chapter 34 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 34 - Prob. 34.1QQCh. 34 - What is the phase difference between the...Ch. 34 - Prob. 34.3QQCh. 34 - Prob. 34.4QQCh. 34 - If the antenna in Figure 33.11 represents the...Ch. 34 - Prob. 34.6QQCh. 34 - A radio wave of frequency on the order of 105 Hz...Ch. 34 - A spherical interplanetary grain of dust of radius...Ch. 34 - Prob. 34.2OQCh. 34 - A typical microwave oven operates at a frequency...
Ch. 34 - Prob. 34.4OQCh. 34 - Prob. 34.5OQCh. 34 - Which of the following statements are true...Ch. 34 - Prob. 34.7OQCh. 34 - Prob. 34.8OQCh. 34 - An electromagnetic wave with a peak magnetic field...Ch. 34 - Prob. 34.10OQCh. 34 - Prob. 34.11OQCh. 34 - suppose a creature from another planet has eyes...Ch. 34 - Prob. 34.2CQCh. 34 - Prob. 34.3CQCh. 34 - List at least three differences between sound...Ch. 34 - If a high-frequency current exists in a solenoid...Ch. 34 - Prob. 34.6CQCh. 34 - Prob. 34.7CQCh. 34 - Do Maxwells equations allow for the existence of...Ch. 34 - Prob. 34.9CQCh. 34 - What does a radio wave do to the charges in the...Ch. 34 - Prob. 34.11CQCh. 34 - An empty plastic or glass dish being removed from...Ch. 34 - Prob. 34.13CQCh. 34 - Prob. 34.1PCh. 34 - Prob. 34.2PCh. 34 - Prob. 34.3PCh. 34 - An election moves through a uniform electric field...Ch. 34 - A proton moves through a region containing a...Ch. 34 - Prob. 34.6PCh. 34 - Suppose you are located 180 in from a radio...Ch. 34 - A diathermy machine, used in physiotherapy,...Ch. 34 - The distance to the North Star, Polaris, is...Ch. 34 - Prob. 34.10PCh. 34 - Review. A standing-wave pattern is set up by radio...Ch. 34 - Prob. 34.12PCh. 34 - The speed of an electromagnetic wave traveling in...Ch. 34 - A radar pulse returns to the transmitterreceiver...Ch. 34 - Figure P34.15 shows a plane electromagnetic...Ch. 34 - Verify by substitution that the following...Ch. 34 - Review. A microwave oven is powered by a...Ch. 34 - Why is the following situation impossible? An...Ch. 34 - ln SI units, the electric field in an...Ch. 34 - At what distance from the Sun is the intensity of...Ch. 34 - If the intensity of sunlight at the Earths surface...Ch. 34 - Prob. 34.22PCh. 34 - A community plans to build a facility to convert...Ch. 34 - Prob. 34.24PCh. 34 - Prob. 34.25PCh. 34 - Review. Model the electromagnetic wave in a...Ch. 34 - High-power lasers in factories are used to cut...Ch. 34 - Consider a bright star in our night sky. Assume...Ch. 34 - What is the average magnitude of the Poynting...Ch. 34 - Prob. 34.30PCh. 34 - Review. An AM radio station broadcasts...Ch. 34 - Prob. 34.32PCh. 34 - Prob. 34.33PCh. 34 - Prob. 34.34PCh. 34 - A 25.0-mW laser beam of diameter 2.00 mm is...Ch. 34 - A radio wave transmits 25.0 W/m2 of power per unit...Ch. 34 - Prob. 34.37PCh. 34 - Prob. 34.38PCh. 34 - A uniform circular disk of mass m = 24.0 g and...Ch. 34 - The intensity of sunlight at the Earths distance...Ch. 34 - Prob. 34.41PCh. 34 - Assume the intensity of solar radiation incident...Ch. 34 - A possible means of space flight is to place a...Ch. 34 - Extremely low-frequency (ELF) waves that can...Ch. 34 - A Marconi antenna, used by most AM radio stations,...Ch. 34 - A large, flat sheet carries a uniformly...Ch. 34 - Prob. 34.47PCh. 34 - Prob. 34.48PCh. 34 - Two vertical radio-transmitting antennas are...Ch. 34 - Prob. 34.50PCh. 34 - What are the wavelengths of electromagnetic waves...Ch. 34 - An important news announcement is transmitted by...Ch. 34 - In addition to cable and satellite broadcasts,...Ch. 34 - Classify waves with frequencies of 2 Hz, 2 kHz, 2...Ch. 34 - Assume the intensity of solar radiation incident...Ch. 34 - In 1965, Arno Penzias and Robert Wilson discovered...Ch. 34 - The eye is most sensitive to light having a...Ch. 34 - Prob. 34.58APCh. 34 - One goal of the Russian space program is to...Ch. 34 - A microwave source produces pulses of 20.0GHz...Ch. 34 - The intensity of solar radiation at the top of the...Ch. 34 - Prob. 34.62APCh. 34 - Consider a small, spherical particle of radius r...Ch. 34 - Consider a small, spherical particle of radius r...Ch. 34 - A dish antenna having a diameter of 20.0 m...Ch. 34 - The Earth reflects approximately 38.0% of the...Ch. 34 - Review. A 1.00-m-diameter circular mirror focuses...Ch. 34 - Prob. 34.68APCh. 34 - Prob. 34.69APCh. 34 - You may wish to review Sections 16.4 and 16.8 on...Ch. 34 - Prob. 34.71APCh. 34 - Prob. 34.72APCh. 34 - Prob. 34.73APCh. 34 - Prob. 34.74APCh. 34 - Prob. 34.75APCh. 34 - Prob. 34.76CPCh. 34 - A linearly polarized microwave of wavelength 1.50...Ch. 34 - Prob. 34.78CPCh. 34 - Prob. 34.79CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A possible means of space flight is to place a perfectly reflecting aluminized sheet into orbit around the Earth and then use the light from the Sun to push this solar sail. Suppose a sail of area A = 6.00 105 m2 and mass m =6.00 103 kg is placed in orbit facing the Sun. Ignore all gravitational effects and assume a solar intensity of 1 370 W/m2. (a) What force is exerted on the sail? (b) What is the sails acceleration? (c) Assuming the acceleration calculated in part (b) remains constant, find the time interval required for the sail to reach the moon, 3.84 108 m away, starting from rest at the Earth.arrow_forwardOptical tweezers use light from a laser to move single atoms and molecules around. Suppose the intensity of light from the tweezers is 1.00 103 W/m2, the same as the intensity of sunlight at the surface of the Earth. a. What is the pressure on an atom if light from the tweezers is totally absorbed? b. If this pressure were exerted on a hydrogen atom, what would be its acceleration? Assume the cross-sectional area is 6.65 1029 m2.arrow_forwardA possible means of space flight is to place a perfectly reflecting aluminized sheet into orbit around the Earth and then use the light from the Sun to push this "solar sail." Suppose a sail of area A = 6.40 ✕ 105 m2 and mass m = 4,900 kg is placed in orbit facing the Sun. Ignore all gravitational effects and assume a solar intensity of 1,370 W/m2. A) If the solar sail were initially in Earth orbit at an altitude of 360 km, show that a sail of this mass density could not escape Earth's gravitational pull regardless of size. (Calculate the magnitude of the gravitational field in m/s2.) B) What would the mass density (in kg/m2) of the solar sail have to be for the solar sail to attain the same initial acceleration of 1193 µm/s2.arrow_forward
- Auroras are caused by collisions between particles such as electrons released by the Sun, and atoms in a planet’s atmosphere. These collisions transfer energy to the atmospheric atoms causing them to emit specific colors (wavelengths) of light. On Earth, auroras occur in a layer of the atmosphere known as the ionosphere, 80 km to 400 km above the surface. If solar activity increases, the number of sunspots increases, and more particles are released by the Sun. If, on average, there were 150 sunspots in 2014, 5 in 2020, and 160 in 2023, which year(s) will have the most auroras, and which year(s) the least? Can you explain why? Answer:arrow_forward(b) The earth has a radius of R = 6.4 x 106 m. It orbits the sun in a nearly circular orbit at an average distance of r = 1.5x 10¹1 m. The solar intensity at the upper atmosphere is 1367 W/m². How much energy does the sun radiate per second?arrow_forward2. A satellite orbiting the Earth is powered by photovoltaic ("solar") panels that convert light energy to electricity with a conversion rate of 15.0%. Telemetry from the satellite indicates that the panels are supplying a peak power output of 3.60 kW, and the specifications of the panels state that they have 16 m² of light-collecting surface area. The radius of the Sun and its distance from Earth have long been known to be 6.96 × 108 m and 1.50 × 10¹¹ m, respectively. Assume the Sun radiates approximately as a blackbody and calculate the surface temperature of the Sun.arrow_forward
- A pulsar is a type of rotating neutron star that emits a beam of electromagnetic radiation. Imagine a pulsar that is moving toward Earth at a speed of 743.000 km/s. It emits mostly radio waves with a wavelength (at the source) of 137.000 cm. What is the observed wavelength of this radiation on Earth? (Assume the Earth is stationary. Consider the speed of light c = 3.00000 x 108 m/s. Give your answer to at least six significant figures.) 4.0 cm Additional Materialsarrow_forwardAssume that when I was 30 years old, I invented a spaceship capable of traveling at 95% of the speed of light, and take off to survey a peculiar infrared star 10 light years from earth. My daughter is 2 years old when I leave earth. I calculate that I age 20 years on my mission. A. while traveling to the star at 95% of the speed of light, I measure the wavelength of its light at 450 nm. What is the actual wavelength of the star's light? B. I turn around and head back to earth at 95% of the speed of light. WHat is the wavelength I see and I move away from the star? C. From my daughter prespective, how old is she when I return?arrow_forwardThe average intensity of sunlight on Earth’s surface is about 1000 ? ?2 ⁄ a. Calculate the solar panel area if the amount of energy that falls on it in 10 hours is 3 × 1012J.b. What intensity would such sunlight have if concentrated by a magnifying glass onto an area 100 times smaller than its own?arrow_forward
- Betelgeuse, a red-giant star in the constellation Orion, has a peak in its radiation at a frequency of 3.09 X 10^14 Hz. What is the surface temperature of Betelgeuse?arrow_forwarduse appropriate formula.arrow_forwardScientists are working on a new technique to kill cancer cells by zapping them with ultrahighenergy (in the range of 1012 W) pulses of light that last for an extremely short time (a few nanoseconds). These short pulses scramble the interior of a cell without causing it to explode, as long pulses would do. We can model a typical such cell as a disk 5.0 µm in diameter, with the pulse lasting for 4.0 ns with an average power of 2.0 x 1012 W. We shall assume that the energy is spread uniformly over the faces of 100 cells for each pulse. (a) How much energy is given to the cell during this pulse? (b) What is the intensity (in W/m2 ) delivered to the cell? (c) What are the maximum values of the electric and magnetic fields in the pulse?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Are Electromagnetic Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=ftyxZBxBexI;License: Standard YouTube License, CC-BY