Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 34, Problem 34.34P
(a)
To determine
The rms electric field due to solar radiation .
(b)
To determine
The average energy density of the solar component of electromagnetic radiation.
(c)
To determine
The average magnitude of the Poynting vector for the sun’s radiation.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
At one location on the Earth, the rms value of the magnetic field caused by solar radiation is 1.80 µT.
(a) Calculate the rms electric field due to solar radiation.
V/m
(b) Calculate the average energy density of the solar component of electromagnetic radiation at this location.
µJ/m3
(c) Calculate the average magnitude of the Poynting vector for the Sun's radiation.
W/m2
(d) Assuming that the average magnitude of the Poynting vector for solar radiation at the surface of the Earth is Say
= 1000 W/m², compare your result in part (c)
with this value.
%
At one location on the Earth, the rms value of the magnetic field caused by solar radiation is 1.90 µT.
(a) Calculate the rms electric field due to solar radiation. V/m(b) Calculate the average energy density of the solar component of electromagnetic radiation at this location. µJ/m3(c) Calculate the average magnitude of the Poynting vector for the Sun's radiation. W/m2(d) Assuming that the average magnitude of the Poynting vector for solar radiation at the surface of the Earth is Sav = 1000 W/m2, compare your result in part (c) with this value. %
Box answer for D
Chapter 34 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 34 - Prob. 34.1QQCh. 34 - What is the phase difference between the...Ch. 34 - Prob. 34.3QQCh. 34 - Prob. 34.4QQCh. 34 - If the antenna in Figure 33.11 represents the...Ch. 34 - Prob. 34.6QQCh. 34 - A radio wave of frequency on the order of 105 Hz...Ch. 34 - A spherical interplanetary grain of dust of radius...Ch. 34 - Prob. 34.2OQCh. 34 - A typical microwave oven operates at a frequency...
Ch. 34 - Prob. 34.4OQCh. 34 - Prob. 34.5OQCh. 34 - Which of the following statements are true...Ch. 34 - Prob. 34.7OQCh. 34 - Prob. 34.8OQCh. 34 - An electromagnetic wave with a peak magnetic field...Ch. 34 - Prob. 34.10OQCh. 34 - Prob. 34.11OQCh. 34 - suppose a creature from another planet has eyes...Ch. 34 - Prob. 34.2CQCh. 34 - Prob. 34.3CQCh. 34 - List at least three differences between sound...Ch. 34 - If a high-frequency current exists in a solenoid...Ch. 34 - Prob. 34.6CQCh. 34 - Prob. 34.7CQCh. 34 - Do Maxwells equations allow for the existence of...Ch. 34 - Prob. 34.9CQCh. 34 - What does a radio wave do to the charges in the...Ch. 34 - Prob. 34.11CQCh. 34 - An empty plastic or glass dish being removed from...Ch. 34 - Prob. 34.13CQCh. 34 - Prob. 34.1PCh. 34 - Prob. 34.2PCh. 34 - Prob. 34.3PCh. 34 - An election moves through a uniform electric field...Ch. 34 - A proton moves through a region containing a...Ch. 34 - Prob. 34.6PCh. 34 - Suppose you are located 180 in from a radio...Ch. 34 - A diathermy machine, used in physiotherapy,...Ch. 34 - The distance to the North Star, Polaris, is...Ch. 34 - Prob. 34.10PCh. 34 - Review. A standing-wave pattern is set up by radio...Ch. 34 - Prob. 34.12PCh. 34 - The speed of an electromagnetic wave traveling in...Ch. 34 - A radar pulse returns to the transmitterreceiver...Ch. 34 - Figure P34.15 shows a plane electromagnetic...Ch. 34 - Verify by substitution that the following...Ch. 34 - Review. A microwave oven is powered by a...Ch. 34 - Why is the following situation impossible? An...Ch. 34 - ln SI units, the electric field in an...Ch. 34 - At what distance from the Sun is the intensity of...Ch. 34 - If the intensity of sunlight at the Earths surface...Ch. 34 - Prob. 34.22PCh. 34 - A community plans to build a facility to convert...Ch. 34 - Prob. 34.24PCh. 34 - Prob. 34.25PCh. 34 - Review. Model the electromagnetic wave in a...Ch. 34 - High-power lasers in factories are used to cut...Ch. 34 - Consider a bright star in our night sky. Assume...Ch. 34 - What is the average magnitude of the Poynting...Ch. 34 - Prob. 34.30PCh. 34 - Review. An AM radio station broadcasts...Ch. 34 - Prob. 34.32PCh. 34 - Prob. 34.33PCh. 34 - Prob. 34.34PCh. 34 - A 25.0-mW laser beam of diameter 2.00 mm is...Ch. 34 - A radio wave transmits 25.0 W/m2 of power per unit...Ch. 34 - Prob. 34.37PCh. 34 - Prob. 34.38PCh. 34 - A uniform circular disk of mass m = 24.0 g and...Ch. 34 - The intensity of sunlight at the Earths distance...Ch. 34 - Prob. 34.41PCh. 34 - Assume the intensity of solar radiation incident...Ch. 34 - A possible means of space flight is to place a...Ch. 34 - Extremely low-frequency (ELF) waves that can...Ch. 34 - A Marconi antenna, used by most AM radio stations,...Ch. 34 - A large, flat sheet carries a uniformly...Ch. 34 - Prob. 34.47PCh. 34 - Prob. 34.48PCh. 34 - Two vertical radio-transmitting antennas are...Ch. 34 - Prob. 34.50PCh. 34 - What are the wavelengths of electromagnetic waves...Ch. 34 - An important news announcement is transmitted by...Ch. 34 - In addition to cable and satellite broadcasts,...Ch. 34 - Classify waves with frequencies of 2 Hz, 2 kHz, 2...Ch. 34 - Assume the intensity of solar radiation incident...Ch. 34 - In 1965, Arno Penzias and Robert Wilson discovered...Ch. 34 - The eye is most sensitive to light having a...Ch. 34 - Prob. 34.58APCh. 34 - One goal of the Russian space program is to...Ch. 34 - A microwave source produces pulses of 20.0GHz...Ch. 34 - The intensity of solar radiation at the top of the...Ch. 34 - Prob. 34.62APCh. 34 - Consider a small, spherical particle of radius r...Ch. 34 - Consider a small, spherical particle of radius r...Ch. 34 - A dish antenna having a diameter of 20.0 m...Ch. 34 - The Earth reflects approximately 38.0% of the...Ch. 34 - Review. A 1.00-m-diameter circular mirror focuses...Ch. 34 - Prob. 34.68APCh. 34 - Prob. 34.69APCh. 34 - You may wish to review Sections 16.4 and 16.8 on...Ch. 34 - Prob. 34.71APCh. 34 - Prob. 34.72APCh. 34 - Prob. 34.73APCh. 34 - Prob. 34.74APCh. 34 - Prob. 34.75APCh. 34 - Prob. 34.76CPCh. 34 - A linearly polarized microwave of wavelength 1.50...Ch. 34 - Prob. 34.78CPCh. 34 - Prob. 34.79CP
Knowledge Booster
Similar questions
- If the electric field of an electromagnetic wave is oscillating along the z-axis and the magnetic field is oscillating along the x-axis, in what possible direction is the wave traveling?arrow_forwardSuppose the magnetic field of an electromagnetic wave is given by B = (1.5 1010) sin (kx t) T. a. What is the maximum energy density of the magnetic field of this wave? b. What is maximum energy density of the electric field?arrow_forwardThe electric field of an electromagnetic wave traveling in vacuum is described by the following wave function: E =(5.00V/m)cos[kx(6.00109s1)t+0.40] j where k is the wavenumber in rad/m, x is in m, t s in Find the following quantities: (a) amplitude (b) frequency (c) wavelength (d) the direction of the travel of the wave (e) the associated magnetic field wavearrow_forward
- A plane electromagnetic wave travels northward. At one instant, its electric field has a magnitude of 6.0 V/m and points eastward. What are the magnitude and direction of the magnetic field at this instant?arrow_forwardFigure P24.13 shows a plane electromagnetic sinusoidal wave propagating in the x direction. Suppose the wavelength is 50.0 m and the electric field vibrates in the xy plane with an amplitude of 22.0 V/m. Calculate (a) the frequency of the wave and (b) the magnetic field B when the electric field has its maximum value in the negative y direction. (c) Write an expression for B with the correct unit vector, with numerical values for Bmax, k, and , and with its magnitude in the form B=Bmaxcos(kxt) Figure P24.13 Problems 13 and 64.arrow_forwardA uniform circular disk of mass m = 24.0 g and radius r = 40.0 cm hangs vertically from a fixed, frictionless, horizontal hinge at a point on its circumference as shown in Figure P34.39a. A beam of electromagnetic radiation with intensity 10.0 MW/m2 is incident on the disk, in a direction perpendicular to its surface. The disk is perfectly absorbing, and the resulting radiation pressure makes the disk rotate. Assuming the radiation is always perpendicular to the surface of the disk, find the angle through which the disk rotates from the vertical as it reaches its new equilibrium position shown in Figure 34.39b. Figure 34.39arrow_forward
- Consider an electromagnetic wave traveling in the positive y direction. The magnetic field associated with the wave at some location at some instant points in the negative x direction as shown in Figure OQ24.12. What is the direction of the electric field at this position and at this instant? (a) the positive x direction (b) the positive y direction (c) the positive z direction (d) the negative z direction (e) the negative y direction Figure OQ24.12arrow_forwardCan the human body detect electromagnetic radiation that is outside the visible region of the spectrum?arrow_forwardWhat is the intensity of an electromagnetic wave with a peak electric field strength of 125 Vim?arrow_forward
- What is the maximum electric field strength in an electromagnetic wave that has a maximum magnetic field strength of 5.00104 (about 10 times Earth's magnetic field)?arrow_forwardThe magnetic field of a plane electromagnetic wave moving along the z axis is given by B =B0(coskz+t) j , where B0=5.001010 and k=3.10102m-1 . (a) Write an expression for the electric field associated with the wave. (b) What are the frequency and the wavelength of the wave? (C) What is its average Poynting vector?arrow_forwardYou are working at NASA, in a division that is studying the possibility of rotating small spacecraft using radiation pressure from the Sun. You have built a scale model of a spacecraft as shown in Figure P33.47. The central body is a spherical shell with mass m = 0.500 kg and radius R = 15.0 cm. The thin rod extending from each side of the sphere is of mass mr = 50.0 g and of total length = 1.00 m. At each end of the rod arc circular plates of mass mp = 10.0 g and radius rp = 2.00 cm, with the center of each plate located at the end of the rod. One plate is perfectly reflecting and the other is perfectly absorbing. The initial configuration of this model is that it is at rest, mounted on a vertical axle with very low friction. To begin the simulation, you expose the model to sunlight of intensity Is = 1 000 W/m2, directed perpendicularly to the plates, for a time interval of t = 2.0 min. The sunlight is then removed from the model. Determine the angular velocity with which the model now rotates about the axle. Figure P33.47arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning