Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 34, Problem 34.49P
Two vertical radio-transmitting antennas are separated by half the broadcast wavelength and are driven in phase with each other. In what horizontal directions are (a) the strongest and (b) the weakest signals
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A television is tuned to a station broadcasting at a frequency of2.04 * 108Hz. For best reception, the rabbit-ear antenna used bythe TV should be adjusted to have a tip-to-tip length equal to halfa wavelength of the broadcast signal. Find the optimum length ofthe antenna
Two identical short dipole antennas are driven in phase with each other with equal strength and
emit readiation at a wavelength of = 0.1 meters.
One antenna is oriented in the y-direction and is located at (x,y,z) = (0,0,0). The other antenna
is oriented in the z-direction and is located at (x,y,z) = (d,0,0) where d > 0.
What is the smallest value of d for which the radiated far-field at a point (x.y,z) = (X, ,0, 0), x,>>
d, and A, is circularly polarized?
What happens to the polarization if d is now doubled?
An antenna with power P = 3.6 × 103 W is radiating spherical electromagnetic waves. Consider a place which is d = 865 m away from the antenna.
Chapter 34 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 34 - Prob. 34.1QQCh. 34 - What is the phase difference between the...Ch. 34 - Prob. 34.3QQCh. 34 - Prob. 34.4QQCh. 34 - If the antenna in Figure 33.11 represents the...Ch. 34 - Prob. 34.6QQCh. 34 - A radio wave of frequency on the order of 105 Hz...Ch. 34 - A spherical interplanetary grain of dust of radius...Ch. 34 - Prob. 34.2OQCh. 34 - A typical microwave oven operates at a frequency...
Ch. 34 - Prob. 34.4OQCh. 34 - Prob. 34.5OQCh. 34 - Which of the following statements are true...Ch. 34 - Prob. 34.7OQCh. 34 - Prob. 34.8OQCh. 34 - An electromagnetic wave with a peak magnetic field...Ch. 34 - Prob. 34.10OQCh. 34 - Prob. 34.11OQCh. 34 - suppose a creature from another planet has eyes...Ch. 34 - Prob. 34.2CQCh. 34 - Prob. 34.3CQCh. 34 - List at least three differences between sound...Ch. 34 - If a high-frequency current exists in a solenoid...Ch. 34 - Prob. 34.6CQCh. 34 - Prob. 34.7CQCh. 34 - Do Maxwells equations allow for the existence of...Ch. 34 - Prob. 34.9CQCh. 34 - What does a radio wave do to the charges in the...Ch. 34 - Prob. 34.11CQCh. 34 - An empty plastic or glass dish being removed from...Ch. 34 - Prob. 34.13CQCh. 34 - Prob. 34.1PCh. 34 - Prob. 34.2PCh. 34 - Prob. 34.3PCh. 34 - An election moves through a uniform electric field...Ch. 34 - A proton moves through a region containing a...Ch. 34 - Prob. 34.6PCh. 34 - Suppose you are located 180 in from a radio...Ch. 34 - A diathermy machine, used in physiotherapy,...Ch. 34 - The distance to the North Star, Polaris, is...Ch. 34 - Prob. 34.10PCh. 34 - Review. A standing-wave pattern is set up by radio...Ch. 34 - Prob. 34.12PCh. 34 - The speed of an electromagnetic wave traveling in...Ch. 34 - A radar pulse returns to the transmitterreceiver...Ch. 34 - Figure P34.15 shows a plane electromagnetic...Ch. 34 - Verify by substitution that the following...Ch. 34 - Review. A microwave oven is powered by a...Ch. 34 - Why is the following situation impossible? An...Ch. 34 - ln SI units, the electric field in an...Ch. 34 - At what distance from the Sun is the intensity of...Ch. 34 - If the intensity of sunlight at the Earths surface...Ch. 34 - Prob. 34.22PCh. 34 - A community plans to build a facility to convert...Ch. 34 - Prob. 34.24PCh. 34 - Prob. 34.25PCh. 34 - Review. Model the electromagnetic wave in a...Ch. 34 - High-power lasers in factories are used to cut...Ch. 34 - Consider a bright star in our night sky. Assume...Ch. 34 - What is the average magnitude of the Poynting...Ch. 34 - Prob. 34.30PCh. 34 - Review. An AM radio station broadcasts...Ch. 34 - Prob. 34.32PCh. 34 - Prob. 34.33PCh. 34 - Prob. 34.34PCh. 34 - A 25.0-mW laser beam of diameter 2.00 mm is...Ch. 34 - A radio wave transmits 25.0 W/m2 of power per unit...Ch. 34 - Prob. 34.37PCh. 34 - Prob. 34.38PCh. 34 - A uniform circular disk of mass m = 24.0 g and...Ch. 34 - The intensity of sunlight at the Earths distance...Ch. 34 - Prob. 34.41PCh. 34 - Assume the intensity of solar radiation incident...Ch. 34 - A possible means of space flight is to place a...Ch. 34 - Extremely low-frequency (ELF) waves that can...Ch. 34 - A Marconi antenna, used by most AM radio stations,...Ch. 34 - A large, flat sheet carries a uniformly...Ch. 34 - Prob. 34.47PCh. 34 - Prob. 34.48PCh. 34 - Two vertical radio-transmitting antennas are...Ch. 34 - Prob. 34.50PCh. 34 - What are the wavelengths of electromagnetic waves...Ch. 34 - An important news announcement is transmitted by...Ch. 34 - In addition to cable and satellite broadcasts,...Ch. 34 - Classify waves with frequencies of 2 Hz, 2 kHz, 2...Ch. 34 - Assume the intensity of solar radiation incident...Ch. 34 - In 1965, Arno Penzias and Robert Wilson discovered...Ch. 34 - The eye is most sensitive to light having a...Ch. 34 - Prob. 34.58APCh. 34 - One goal of the Russian space program is to...Ch. 34 - A microwave source produces pulses of 20.0GHz...Ch. 34 - The intensity of solar radiation at the top of the...Ch. 34 - Prob. 34.62APCh. 34 - Consider a small, spherical particle of radius r...Ch. 34 - Consider a small, spherical particle of radius r...Ch. 34 - A dish antenna having a diameter of 20.0 m...Ch. 34 - The Earth reflects approximately 38.0% of the...Ch. 34 - Review. A 1.00-m-diameter circular mirror focuses...Ch. 34 - Prob. 34.68APCh. 34 - Prob. 34.69APCh. 34 - You may wish to review Sections 16.4 and 16.8 on...Ch. 34 - Prob. 34.71APCh. 34 - Prob. 34.72APCh. 34 - Prob. 34.73APCh. 34 - Prob. 34.74APCh. 34 - Prob. 34.75APCh. 34 - Prob. 34.76CPCh. 34 - A linearly polarized microwave of wavelength 1.50...Ch. 34 - Prob. 34.78CPCh. 34 - Prob. 34.79CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A microwave source produces pulses of 21.0 GHz radiation, with each pulse lasting 1.00 ns. A parabolic reflector with a face area of radius R = 8.50 cm is used to focus the microwaves into a parallel beam of radiation, as shown in the figure below. The average power during each pulse is 25.0 kW. (a) What is the wavelength of these microwaves? cm (b) What is the total energy contained in each pulse? μJ (c) Compute the average energy density inside each pulse. mJ/m³ 3 (d) Determine the amplitude of the electric field and magnetic field in these microwaves. Emax kv/m μT B. max (e) Compute the force exerted on the surface during the 1.00 ns duration of each pulse. Assume this pulsed beam strikes an absorbing surface. UNarrow_forwardIn a plane radio wave the maximum value of the electric field component is 4.85 V/m. Calculate (a) the maximum value of the magnetic field component and (b) the wave intensity. (a) Number 0.031 Units (b) Number Units W/m^2 v W/m^2 1.09arrow_forwardAssume (unrealistically) that a TV station acts as a point source broadcasting isotropically at 1.0 MW.What is the intensity of the transmitted signal reaching Proxima Centauri, the star nearest our solar system, 4.3 ly away? (An alien civilization at that distance might be able to watch X Files.) A light-year (ly) is the distance light travels in one year.arrow_forward
- Assume the mostly infrared radiation from a heat lamp acts like a continuous wave with wavelength 1.50 µm. (a) If the lamp's 205 W output is focused on a person's shoulder, over a circular area 24.0 cm in diameter, what is the intensity in W/m²? W/m? (b) What is the peak electric field strength in kV/m? kV/m (c) Find the peak magnetic field strength in µT. (d) How long will it take in seconds to increase the temperature of the 3.80 kg shoulder by 2.00°C, assuming no other heat transfer and given its specific heat is 3.47 × 103 J/(kg · °C)?arrow_forwardTwo friends are playing with hand-held radio transcelvers which have dipole antennas. If the antenna of the transmitting radio is vertical, and the antenna of the receiving radio is at an angle 0 to the vertical, what is the recelved power as a percentage of the maximum possible received power at the receiving antenna in the following cases? (a) e - 22.00 % (b) e - 47.0° % (c) e - 79.0°arrow_forwardThe average intensity of a particular TV station's signal is 1.0 x 10-13 W/m² when it arrives at a 33-cm-diameter satellite TV antenna. (a) Calculate the total energy received by the antenna during 4.0 hours of viewing this station's programs. (b) Estimate the amplitudes of the E and B fields of the EM wave.arrow_forward
- You walk in a circle of radius 1.20 km around the midpoint of a pair of identical radio antennas that are 8.00 m apart. The intensity decreases continuously from 0.0540 W>m2 in the direction u = 0 to 0.0303 W/m2 in the direction u = 6.00. Find (a) the wavelength of the radio waves and (b) the intensity in the direction u = 12.0.arrow_forwardIt is often desirable to radiate most of the energy from a radio transmitter in particular directions rather than uniformly in all directions. Pairs or rows of antennas are often used to produce the desired radiation pattern. As an example, consider two identical vertical antennas 400 m apart, operating at 1500 kHz = 1.5 * 106 Hz (near the top end of the AM broadcast band) and oscillating in phase. At distances much greater than 400 m, in what directions is the intensity from the two antennas greatest?arrow_forwardTwo handheld radio transceivers with dipole antennas are separated by a large fixed distance. If the transmitting antenna is vertical, what fraction of the maximum received power will appear in the receiving antenna when it is inclined from the vertical by (a) 15.0°, (b) 45.0°, and (c) 90.0°?arrow_forward
- The intensity of a particular TV station’s signal is I =1.01 x 10^(-13) W/m^2 when it arrives at a 28-cm diameter satellite TV antenna. A) Calculate the total energy received by the antenna during 5.0 hours and 40 minutes of viewing this station’s programs. B)What is the amplitude of the field of the EM waves? (E field)arrow_forwardA radio station on the surface of the earth radiates an EM-wave with an average total power of 50 kilowatts. Assuming the transmitter radiates equally in all directions (not in real life), find the amplitudes Emaxmax and Bmaxmax detected by a satellite at a distance of 100 km from the antenna?arrow_forward2) A radio antenna broadcasts a 1.0 MHz radio wave with 30 kW of power. Assume that the radiation is emitted uniformly in all directions What is the wave intensity 27 km from the antenna? O 190.42 * 10^-6 W/m^2 O 9.2 * 10^-6 W/m^2 O 910.99 * 10^-6 W/m^2 O 3.27 * 10^-6 W/m^2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY