Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 33, Problem 21P
To determine
The
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 24.5-mW laser beam of diameter 2.02 mm is reflected at normal incidence by a perfectly reflecting mirror. Calculate the radiation pressure on the mirror. Pa
A 5.0-mW laser beam has a circular cross section with a diameter of 0.50 mm. What is the maximum radiation pressure that this laser can exert on (a) a mirrored surface and (b) a black surface?
A solar panel on a telescope is rectangular and is 7.56m in length and 2.45m wide. When the panel faces the sun directly, the force on it due to absorbed sunlight is 8.46x10^-5N. Calculate the radiation pressure and the intensity of sunlight at the telescope's location in space.
Chapter 33 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 33.1 - Prob. 33.1QQCh. 33.3 - What is the phase difference between the...Ch. 33.3 - Prob. 33.3QQCh. 33.5 - Prob. 33.4QQCh. 33.6 - Prob. 33.5QQCh. 33.7 - Prob. 33.6QQCh. 33.7 - Prob. 33.7QQCh. 33 - Prob. 1PCh. 33 - Prob. 2PCh. 33 - Prob. 3P
Ch. 33 - Prob. 4PCh. 33 - The distance to the North Star, Polaris, is...Ch. 33 - Prob. 6PCh. 33 - Prob. 7PCh. 33 - Prob. 8PCh. 33 - Prob. 9PCh. 33 - Prob. 10PCh. 33 - Prob. 11PCh. 33 - Prob. 12PCh. 33 - If the intensity of sunlight at the Earths surface...Ch. 33 - Prob. 14PCh. 33 - Prob. 15PCh. 33 - Review. Model the electromagnetic wave in a...Ch. 33 - Prob. 17PCh. 33 - Prob. 18PCh. 33 - Prob. 19PCh. 33 - Prob. 20PCh. 33 - Prob. 21PCh. 33 - The intensity of sunlight at the Earths distance...Ch. 33 - Prob. 23PCh. 33 - Prob. 24PCh. 33 - Prob. 25PCh. 33 - Prob. 26PCh. 33 - Extremely low-frequency (ELF) waves that can...Ch. 33 - A large, flat sheet carries a uniformly...Ch. 33 - Prob. 29PCh. 33 - Prob. 30PCh. 33 - Prob. 31PCh. 33 - Prob. 32PCh. 33 - Prob. 33APCh. 33 - Prob. 34APCh. 33 - Prob. 35APCh. 33 - Prob. 36APCh. 33 - Prob. 37APCh. 33 - One goal of the Russian space program is to...Ch. 33 - Prob. 39APCh. 33 - Prob. 40APCh. 33 - Prob. 41APCh. 33 - Prob. 42APCh. 33 - Prob. 43APCh. 33 - Prob. 44APCh. 33 - Review. (a) A homeowner has a solar water heater...Ch. 33 - Prob. 46APCh. 33 - Prob. 47APCh. 33 - Prob. 48APCh. 33 - Prob. 49APCh. 33 - Prob. 50CPCh. 33 - Prob. 51CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why is t1 radiation pressure of an electromagnetic wave on a perfectly reflecting surface twice as large as the pressure on a perfectly absorbing surface?arrow_forwardWhat is the average magnitude of the Poynting vector 5.00 mi from a radio transmitter broadcasting isotropically (equally in all directions) with an average power of 250 kW?arrow_forwardWhat is the intensity of an electromagnetic wave with a peak electric field strength of 125 Vim?arrow_forward
- A 150-W lightbulb emits 5% of its energy as electromagnetic radiation. What is the magnitude of the average Poynting vector 10 m from the bulb?arrow_forwardA plane electromagnetic wave travels northward. At one instant, its electric field has a magnitude of 6.0 V/m and points eastward. What are the magnitude and direction of the magnetic field at this instant?arrow_forwardWhat is the maximum electric field strength in an electromagnetic wave that has a maximum magnetic field strength of 5.00104 (about 10 times Earth's magnetic field)?arrow_forward
- Suppose the magnetic field of an electromagnetic wave is given by B = (1.5 1010) sin (kx t) T. a. What is the maximum energy density of the magnetic field of this wave? b. What is maximum energy density of the electric field?arrow_forwardA radio wave transmits 44.0 W/m2 of power per unit area. A flat surface of area A is perpendicular to the direction of propagation of the wave. Assuming the surface is a perfect absorber, calculate the radiation pressure on it.arrow_forwardA 26.4-mW laser beam of diameter 1.87 mm is reflected at normal incidence by a perfectly reflecting mirror. Calculate the radiation pressure on the mirror. | N/m2 Need Help? Read Itarrow_forward
- A 25.0-mW laser beam of diameter 2.00 mm is reflected at normal incidence by a perfectly reflecting mirror. Calculate the radiation pressure on the mirror. (5.31 10-5 N/m2)arrow_forwardA laser point delivers 0.10-mW average power in a beam 0.90 mm in diameter. Find the average radiation pressure it exerts on a perfectly silvered mirror.arrow_forwardA solar sail 32.5 m2 in area and made of an absorptive material is orbiting the Sun in space. The Sun light normally incident on the solar sail exerts a radiation pressure of 3.22E-6 N/m2 on it. If the material is replaced with a reflective material that can complete reflect the Sun light, what will the radiation pressure become (in N/m2)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Are Electromagnetic Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=ftyxZBxBexI;License: Standard YouTube License, CC-BY