Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 33, Problem 24P
(a)
To determine
The maximum electric field in the beam.
(b)
To determine
The total energy contained in
(c)
To determine
The momentum carried by a length
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A helium–neon laser emits a beam of circular cross section with a radius r and a power P. (a) Find the maximum electric field in the beam. (b) What total energy is contained in a length ℓ of the beam? (c) Find the momentum carried by a length ℓ of the beam.
electromagnetic theory
A microscopic spherical dust particle of radius r and mass m is moving in outer space at a constant speed v. A wave of light strikes it from the opposite direction of its motion and gets absorbed.
Assuming the particle decelerates uniformly to zero speed in time t, write an equation for the average electric field amplitude in the light.
Chapter 33 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 33.1 - Prob. 33.1QQCh. 33.3 - What is the phase difference between the...Ch. 33.3 - Prob. 33.3QQCh. 33.5 - Prob. 33.4QQCh. 33.6 - Prob. 33.5QQCh. 33.7 - Prob. 33.6QQCh. 33.7 - Prob. 33.7QQCh. 33 - Prob. 1PCh. 33 - Prob. 2PCh. 33 - Prob. 3P
Ch. 33 - Prob. 4PCh. 33 - The distance to the North Star, Polaris, is...Ch. 33 - Prob. 6PCh. 33 - Prob. 7PCh. 33 - Prob. 8PCh. 33 - Prob. 9PCh. 33 - Prob. 10PCh. 33 - Prob. 11PCh. 33 - Prob. 12PCh. 33 - If the intensity of sunlight at the Earths surface...Ch. 33 - Prob. 14PCh. 33 - Prob. 15PCh. 33 - Review. Model the electromagnetic wave in a...Ch. 33 - Prob. 17PCh. 33 - Prob. 18PCh. 33 - Prob. 19PCh. 33 - Prob. 20PCh. 33 - Prob. 21PCh. 33 - The intensity of sunlight at the Earths distance...Ch. 33 - Prob. 23PCh. 33 - Prob. 24PCh. 33 - Prob. 25PCh. 33 - Prob. 26PCh. 33 - Extremely low-frequency (ELF) waves that can...Ch. 33 - A large, flat sheet carries a uniformly...Ch. 33 - Prob. 29PCh. 33 - Prob. 30PCh. 33 - Prob. 31PCh. 33 - Prob. 32PCh. 33 - Prob. 33APCh. 33 - Prob. 34APCh. 33 - Prob. 35APCh. 33 - Prob. 36APCh. 33 - Prob. 37APCh. 33 - One goal of the Russian space program is to...Ch. 33 - Prob. 39APCh. 33 - Prob. 40APCh. 33 - Prob. 41APCh. 33 - Prob. 42APCh. 33 - Prob. 43APCh. 33 - Prob. 44APCh. 33 - Review. (a) A homeowner has a solar water heater...Ch. 33 - Prob. 46APCh. 33 - Prob. 47APCh. 33 - Prob. 48APCh. 33 - Prob. 49APCh. 33 - Prob. 50CPCh. 33 - Prob. 51CP
Knowledge Booster
Similar questions
- A high-energy pulsed laser emits a 1.0-ns-long pulse ofaverage power 1.5 x 1011 W .The beam is nearly a cylinder 2.2 x 10-3in radius. Determine (a) the energy delivered in each pulse, and (b) the rms value of the electric field.arrow_forwardA 13.0-mW helium-neon laser emits a beam of circular cross section with a diameter of 3.10 mm. (a) Find the maximum electric field in the beam. (b) What total energy is contained in a 1.00-m length of the beam? (c) Find the momentum carried by a 1.00-m length of the beam. Step 1 We will find the reasonable size of the electric field in a beam of bright light. At the speed of light, only a small fraction of a joule is contained in a meter-length beam. The momentum of the beam is a very small fraction of a kg. m/s. Light is described by energy and momentum but possesses no mass. Step 2 We will use the equation relating the intensity of light to the wave amplitude. From the definition of intensity, we can find the energy content of the beam of light. Then the relationship between momentum, energy, and the speed of light will give us the momentum of a length of the beam. Step 3 The intensity of light I is given by the average magnitude of the Poynting vector. We have 2 I = S₂ avg P Tr²…arrow_forwardA 14.0-mW helium-neon laser emits a beam of circular cross section with a diameter of 2.85 mm. (a) Find the maximum electric field in the beam. kN/C (b) What total energy is contained in a 1.00-m length of the beam? pJ (c) Find the momentum carried by a 1.00-m length of the beam. kg. m/sarrow_forward
- A 18.0-mW helium–neon laser emits a beam of circular cross section with a diameter of 1.75 mm. (a) Find the maximum electric field in the beam. kN/C(b) What total energy is contained in a 1.00-m length of the beam? pJ(c) Find the momentum carried by a 1.00-m length of the beam. kg · m/sarrow_forwardA possible means of space flight is to place a perfectly reflecting aluminized sheet into orbit around the Earth and then use the light from the Sun to push this "solar sail." Suppose a sail of area A = 5.20 ✕ 105 m2 and mass m = 6,800 kg is placed in orbit facing the Sun. Ignore all gravitational effects and assume a solar intensity of 1,370 W/m2. (d) What If? If the solar sail were initially in Earth orbit at an altitude of 300 km, show that a sail of this mass density could not escape Earth's gravitational pull regardless of size. (Calculate the magnitude of the gravitational field in m/s2.) m/s2 (e) What would the mass density (in kg/m2) of the solar sail have to be for the solar sail to attain the same initial acceleration as that in part (b)? kg/m2arrow_forwardLunar astronauts placed a reflector on the Moon’s surface, from which a laser beam is periodically reflected. The distance to the Moon is calculated from the round-trip time. To what precision, in meters, can the distance to the Moon be determined, if this time can be measured to 0.105 ns?arrow_forward
- Lunar astronauts placed a reflector on the Moon’s surface, off which a laser beam is periodically reflected. The distance to the Moon is calculated from the round-trip time. (a) To what accuracy in meters can the distance to the Moon be determined, if this time can be measured to 0.100 ns? (b) What percent accuracy is this, given the average distance to the Moon is 3.84×108 m?arrow_forwardThe electric field strength in the region 0arrow_forward(a) A Block of mass 0.2kg is given an initial speed vo =5km/s on a horizontal rough surface of length 2m as in figure. The coefficient of kinetic friction on the horizontal surface is 0.30. if the curved part of the track is frictionless how high does the block rise before coming to rest. 2m (b) Define the Electromagnetic wave, and list various types of it.arrow_forwardConsider regions of the EM spectrum. In order to study the structure of a crystalline solid, you want to illuminate it with EM radiation whose wavelength is the same as the spacing of the atoms in the crystal (0.190 nm). A) What is the frequency of the EM radiation in Hertz? B) In what part of the EM spectrum (radio, visible, etc.) does it lie?arrow_forwardA 16.0-mW helium–neon laser emits a beam of circular cross section with a diameter of 2.95 mm. Find the maximum electric field in the beam. What total energy is contained in a 1.00-m length of the beam? Find the momentum carried by a 1.00-m length of the beam.arrow_forwardOptical tweezers use light from a laser to move single atoms and molecules around. Suppose the intensity of light from the tweezers is 1000 W/m², the same as the intensity of sunlight at the surface of the Earth. (a) What is the pressure on an atom if light from the tweezers is totally absorbed? Pa -27 -29 (b) If this pressure were exerted on a tritium atom, what would be its acceleration? (The mass of a tritium atom is 5.01 x 10- kg. Assume the cross-sectional area of the laser beam is 6.65 x 10- m/s² m².)arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you