Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 33.6, Problem 33.5QQ
To determine
The best orientation for your portable radio antenna located to the right of the figure is the antenna in figure I represents the source of a distance station.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If the antenna as shown represents the source of a distant radio station, what would be the best orientation for your portable radio antenna located to the right of the figure? (a) up-down along the page (b) left-right along the page (c) perpendicular to the page
Problem 4: Consider the 100-MHz radio waves used in an MRI device.
Part (a) What is the wavelength, in meters, of these radio waves?
λ = 3
Part (b) If the frequencies are swept over a ±12.5 MHz range centered on 100 MHz, what is the minimum, in meters, of the range of wavelengths emitted?
λmin =
Part (c) What is the maximum, in meters, of this wavelength range?
λmax =
Other than from the ranges of wavelengths shown in Figure, can you
find a way to distinguish radio waves from infrared waves ? Visible
from infrared ? That is , could you design a radio that could be tuned
to infrared waves ? Could living beings " se " in the infrared region?
Wavelength (m)
106
104
102
100
10-2
104
10-6
10-8
10-10
10-12
AM
FM TV
Microwave
Infrared
Nuclear gamma rays
Ultraviolet
Broadcast
Visible
light
Long-wave radio
Short-wave radio
X rays
102
104
106
10
1010
1012
1014
1016
1018
1020
1022
Frequency (Hz)
FIGURE 1.7 The electromagnetic spectrum. The boundaries of the regions are not sharply defined.
Chapter 33 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 33.1 - Prob. 33.1QQCh. 33.3 - What is the phase difference between the...Ch. 33.3 - Prob. 33.3QQCh. 33.5 - Prob. 33.4QQCh. 33.6 - Prob. 33.5QQCh. 33.7 - Prob. 33.6QQCh. 33.7 - Prob. 33.7QQCh. 33 - Prob. 1PCh. 33 - Prob. 2PCh. 33 - Prob. 3P
Ch. 33 - Prob. 4PCh. 33 - The distance to the North Star, Polaris, is...Ch. 33 - Prob. 6PCh. 33 - Prob. 7PCh. 33 - Prob. 8PCh. 33 - Prob. 9PCh. 33 - Prob. 10PCh. 33 - Prob. 11PCh. 33 - Prob. 12PCh. 33 - If the intensity of sunlight at the Earths surface...Ch. 33 - Prob. 14PCh. 33 - Prob. 15PCh. 33 - Review. Model the electromagnetic wave in a...Ch. 33 - Prob. 17PCh. 33 - Prob. 18PCh. 33 - Prob. 19PCh. 33 - Prob. 20PCh. 33 - Prob. 21PCh. 33 - The intensity of sunlight at the Earths distance...Ch. 33 - Prob. 23PCh. 33 - Prob. 24PCh. 33 - Prob. 25PCh. 33 - Prob. 26PCh. 33 - Extremely low-frequency (ELF) waves that can...Ch. 33 - A large, flat sheet carries a uniformly...Ch. 33 - Prob. 29PCh. 33 - Prob. 30PCh. 33 - Prob. 31PCh. 33 - Prob. 32PCh. 33 - Prob. 33APCh. 33 - Prob. 34APCh. 33 - Prob. 35APCh. 33 - Prob. 36APCh. 33 - Prob. 37APCh. 33 - One goal of the Russian space program is to...Ch. 33 - Prob. 39APCh. 33 - Prob. 40APCh. 33 - Prob. 41APCh. 33 - Prob. 42APCh. 33 - Prob. 43APCh. 33 - Prob. 44APCh. 33 - Review. (a) A homeowner has a solar water heater...Ch. 33 - Prob. 46APCh. 33 - Prob. 47APCh. 33 - Prob. 48APCh. 33 - Prob. 49APCh. 33 - Prob. 50CPCh. 33 - Prob. 51CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- More than one analyzer can be used in a setup like that in the following figure, each analyzer following the previous one. Suppose that the transmission axis of the first analyzer is rotated 26° relative to the transmission axis of the polarizer, and that the transmission axis of each additional analyzer is rotated 26° relative to the transmission axis of the previous one. What is the MINIMUM number of analyzers needed, so the light reaching the photocell has an intensity that is REDUCED to AT LEAST one hundredth relative to that striking the first analyzer?arrow_forwardA signal from of PLDT-Fibr travels through its optic cable at the speed of (2x108 m/s).a.) How long will it take for the signal to travel from our house to LJ’s house which has a30.35 km distance b.) What length in inches of the optic cable represents 0.75 ms(millisecond)?arrow_forwardWhat is the wavelength (in m) of a radio signal with a frequency of 98.3 MHz? Enter the numerical part of your answer to three decimal figures. The speed of light in a vacuum (and in normal air) = Vlight = c = 3.00 × 108 m/s. Your Answer:arrow_forward
- Light with a wavelength of 571 nm is in the visible part of the electromagnetic spectrum. What is the numerical value of the exponent p if 571 nm = 571 x 10² cm? p= Report your numerical answer below, assuming three significant figures.arrow_forwardNeed correct answer and correct explanation! I will thumbs up if all is correct please.....ASAParrow_forwardA spacecraft is traveling at almost the speed of light towards Alpha Proxima, the closest star outside of our solar system. A spectrometer focused on our sun is looking at the wavelengths of light it gives off. Compared to the wavelengths observed from Earth, what would you expect to see from the speeding craft? a The apparent wavelength would be brighter. b The apparent wavelength would be dimmer. c The apparent wavelength would be shorter. d The apparent wavelength would be longer.arrow_forward
- Learning Goal: To understand polarization of light and how to use Malus's law to calculate the intensity of a beam of light after passing through one or more polarizing filters. The two transverse waves shown in the figure (Figure 1) both travel in the +z direction. The waves differ in that the top wave oscillates horizontally and the bottom wave oscillates vertically. The direction of oscillation of a wave is called the polarization of the wave. The upper wave is described as polarized in the +x direction whereas the lower wave is polarized in the +y direction. In general, waves can be polarized along any direction. Recall that electromagnetic waves, such as visible light, microwaves, and X rays, consist of oscillating electric and magnetic fields. The polarization of an electromagnetic wave refers to the oscillation direction of the electric field, not the magnetic field. In this problem all figures depicting light waves illustrate only the electric field. A linear polarizing filter,…arrow_forwardDetermine the frequency of red visible light (λ = 650 nm) (GIVEN: 1 m = 10⁹ nm) Answer: Tip: To enter scientific notation, use "e". Examples: 21000 is 2.1×104. It would be entered as 2.1e4 0.000093 is 9.3x105. It would be entered as 9.3e-5 Hzarrow_forward1. A radio station utilizes frequencies between commercial AM and FM. What is the frequency of a 11.2 m- wavelength channel? Given: Required : Equation : Solution : Answer : 2. What is the frequency of an EM wave that is carrying a 2.3x10-8J of energy? Given: Required : Equation : Solution : Answer :arrow_forward
- Do all part pleasearrow_forwardThe magnetic field of a sinusoidal EM wave satisfies the following equationB(t , x) = (4.5 uT) sin[2.81*10^15(rad/s)t + 9.37 * 10^6 (rad/m)x] the EM wave falls where on the electromagnetic spectrum? Please give detailed steps on how you solved this.arrow_forwardIn the Figure, if a;=10 Np/m ve B1= 1,56 rad/m for the medium 1, az=9,4 Np/m, B2=1,1 rad/m for the medium 2 and f=1GHZ, T=-0,69 , find the distance at which the magnitude of reflected electric field is equal to (E= 4,9 V/m. Z Er2, Hr2, 02 Et Ei ît îi E" X = 0 V f=1GHZ E'(x = 0)| = 16- marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Are Electromagnetic Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=ftyxZBxBexI;License: Standard YouTube License, CC-BY