Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 33, Problem 39AP
To determine
The order of amount of solar energy absorbed.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Problem: Radiation Related
The energy flux associated with solar radiation incident on the outer surface of the earth's atmosphere has been accurately measured and is known to be 1,368 W/m^2. The diameters of the sun and earth are 1.39 X 10^9 and 1.27 x 10^7 m, respectively, and the distance between the sun and the earth is 1.5 × 10^11 m.
(a) What is the emissive power of the sun?
(b) Approximating the sun's surface as black, what is its temperature?
(c) At what wavelength is the spectral emissive power of the sun a maximum?
(d) Assuming the earth's surface to be black and the sun to be the only source of energy for the earth, estimate the earth's surface temperature.
What is the rate of heat transfer by radiation from the skin
of a person standing in a dark room whose ambient
temperature is 22 °C ? The person has a normal skin
temperature of 33 °C and a surface area of 1.50 m².The
emissivity of skin is 0.97 in the infrared, the part of the
spectrum where the radiation takes place.
A python can detect thermal radiation from objects that differ in temperature from their environment as long as the received intensity of thermal radiation is greater than 0.60 W/m2. Your body emits a good deal of thermal radiation; a typical human body has a surface area of 1.8 m2, a surface temperature of 30∘C, and an emissivity e = 0.97 at infrared wavelengths. As we've seen, the intensity of a source of radiation decreases with the distance from the source.
If you are outside on a cool, dark night, what is the maximum distance from which a python could detect your presence?
Chapter 33 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 33.1 - Prob. 33.1QQCh. 33.3 - What is the phase difference between the...Ch. 33.3 - Prob. 33.3QQCh. 33.5 - Prob. 33.4QQCh. 33.6 - Prob. 33.5QQCh. 33.7 - Prob. 33.6QQCh. 33.7 - Prob. 33.7QQCh. 33 - Prob. 1PCh. 33 - Prob. 2PCh. 33 - Prob. 3P
Ch. 33 - Prob. 4PCh. 33 - The distance to the North Star, Polaris, is...Ch. 33 - Prob. 6PCh. 33 - Prob. 7PCh. 33 - Prob. 8PCh. 33 - Prob. 9PCh. 33 - Prob. 10PCh. 33 - Prob. 11PCh. 33 - Prob. 12PCh. 33 - If the intensity of sunlight at the Earths surface...Ch. 33 - Prob. 14PCh. 33 - Prob. 15PCh. 33 - Review. Model the electromagnetic wave in a...Ch. 33 - Prob. 17PCh. 33 - Prob. 18PCh. 33 - Prob. 19PCh. 33 - Prob. 20PCh. 33 - Prob. 21PCh. 33 - The intensity of sunlight at the Earths distance...Ch. 33 - Prob. 23PCh. 33 - Prob. 24PCh. 33 - Prob. 25PCh. 33 - Prob. 26PCh. 33 - Extremely low-frequency (ELF) waves that can...Ch. 33 - A large, flat sheet carries a uniformly...Ch. 33 - Prob. 29PCh. 33 - Prob. 30PCh. 33 - Prob. 31PCh. 33 - Prob. 32PCh. 33 - Prob. 33APCh. 33 - Prob. 34APCh. 33 - Prob. 35APCh. 33 - Prob. 36APCh. 33 - Prob. 37APCh. 33 - One goal of the Russian space program is to...Ch. 33 - Prob. 39APCh. 33 - Prob. 40APCh. 33 - Prob. 41APCh. 33 - Prob. 42APCh. 33 - Prob. 43APCh. 33 - Prob. 44APCh. 33 - Review. (a) A homeowner has a solar water heater...Ch. 33 - Prob. 46APCh. 33 - Prob. 47APCh. 33 - Prob. 48APCh. 33 - Prob. 49APCh. 33 - Prob. 50CPCh. 33 - Prob. 51CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The intensity of solar radiation at the top of the Earth’s atmosphere is 1 370 W/m2. Assuming 60% of the incoming solar energy reaches the Earth’s surface and you absorb 50% of the incident energy, make an order-of-magnitude estimate of the amount of solar energy you absorb if you sunbathe for 60 minutes.arrow_forwardThe mean distance between the Earth and the Sun is 1.50 x 10 m. The average intensity of solar radiation incident on the upper atmosphere of the Earth is 1390 W/m. Assuming that the Sun cmits radiation uniformly in all directions, determine the total power radiated by the Sun.arrow_forwardThe intensity of sunlight is around 1330 W/m2 at the top of earth’s atmosphere. If the sunlight is all absorbed, what is the force on the earth from sunlight?arrow_forward
- The intensity of solar radiation at the top of the Earth's atmosphere is 1 370 W/m². Assuming 60% of the incoming solar energy reaches the Earth's surface and you absorb 50% of the incident energy, make an order-of-magnitude if you sunbathe for 60 minutes. estimate of the amount of solar energy you absorbarrow_forwardA spherical interplanetary probe, with a diameter of 2 m, is sent out into the solar system. The probe surface is made of material having an emissivity of 0.9 and an absorptivity of 0.1. Signals from the sensors monitoring the probe surface temperatures are indicating an average value of −40°C for a space temperature of 0 K. If the electronics inside the probe is generating heat at a rate of 100 W/m3, determine the incident radiation rate on the probe surface.arrow_forwardWhat is the frequency of the most intense radiation emitted by your body? Assume a skin temperature of 95°. Group of answer choices 1.81 x 10^13 Hz 6.43 x 10^14 Hz 1.65 x 10^13 Hz 3.18 x 10^14 Hzarrow_forward
- If emissivity of the body is equal to 1 and Stefan constant= 5.7x10-8 watt/m?. k°. when a person is exchanging radiation energy with the environment of temperature 25c° and the skin temperature is 33c°. Find the area of the person in order to radiate 65.9 J/sec O 1.2 m2 1.61 m2 O 1.32 m2arrow_forward(b) The earth has a radius of R = 6.4 x 106 m. It orbits the sun in a nearly circular orbit at an average distance of r = 1.5x 10¹1 m. The solar intensity at the upper atmosphere is 1367 W/m². How much energy does the sun radiate per second?arrow_forwardAssume, the average radiation intake of the planet earth increases by 120 W/m² momentarily. The planet therefore leaves its thermal equilibrium and starts heating up (neglect additional thermal losses). The total weight of the planet is 6 x 1024 kg. Assume, that we have 1.1 x 109 km³ of sea water and the rest of the planet is rock. The heat capacity of sea water is 3.6 kJ/ kg K, the density is 1 t/m³. The heat capacity of rock is 1.1 kJ/ kg K, the density is 2.9 t/m². Take the cross section area of the planet as A = r² with r being 6500 km. How long does it take, until the temperature of the earth has risen by 3°C? Assume, the full mass of the planet is always on the same temperature. Why is the result much lower than you'd expect? Which of the assumptions is not realistic?arrow_forward
- A student is trying to decide what to wear.His bedroom is at 20°c.His skin Temperature is 35.0°c.The area of his exposed skin is 1.50 sq.mitres.People all over the world have skin that is dark in the infrared,with emessivity about 0.900.Find the net energy transfer from his body by radiation in 10.0 minutes.arrow_forwardThe evaporation of perspiration is the primary mechanism for cooling the human body. Estimate the amount of water you will lose when you bake in the sun on the beach for an hour. Use a value of 1000 W/m2 for the intensity of sunlight and note that the energy required to evaporate a liquid at a particular temperature is approximately equal to the sum of the energy required to raise its temperature to the boiling point and the latent heat of vaporization (determined at the boiling point).arrow_forwardA second is defined as the duration o 9.19×10^9 periods of the radiation emitted by a cesium atom. Assume the radiation from the cesium atom moves at the speed of light. Calculate the wavelength of the radiation, defined as the distance travelled by it in one period. How many wavelengths of this radiation will fit in 1marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
What Are Electromagnetic Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=ftyxZBxBexI;License: Standard YouTube License, CC-BY