Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 32, Problem 32.7CQ
The open switch in Figure CQ32.7 is thrown closed at t = 0. Before the switch is closed, the capacitor is uncharged and all currents are zero. Determine the currents in L, C. and R, the emf across L, and the potential differences across C and R (a) at the instant after the switch is closed and (b) long after it is closed.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
In the figure, suppose the switch has been closed for a length of time sufficiently long for the capacitor to become fully charged. For this circuit, R1 = 12.0 kΩ, R2 = 15.0 kΩ, R3 = 3.000 kΩ, C = 10.0 μF , and emf = 9.00 V. Find (d) the potential differance across R2. (e) the charge on the capacitor.
R1
S
R3.
R2
4. Determine in the current in each resistor given that R1 = R2 = R3 = 12,
the capacitance C = 0.5 µF, and potential across the batter of E = 2V when
the switch is closed at t = 0. Determine then after some time (t = x) after the
switch is closed the currents in each resistor.
Problem #2: Maxwell's Equations.
Consider the RC circuit shown.
It consists of:
an ideal 18 V battery,
E
a 30 resistor, and
a 15 mF capacitor.
R
The capacitor consists of two circular plates separated by a small
distance. Each plate has radius R € 0.46 m. The capacitor is initially
uncharged.
GH
=
At time t = 0, the switch is closed.
с
3. How fast is the electric flux between the capacitor plates changing at the instant the switch is closed?
S
4. When the current through the resistor is 0.40 A, what is the magnetic field at point H, a distance of 0.35 m from
the center of the capacitor?
Chapter 32 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 32 - A coil with zero resistance has its ends labeled a...Ch. 32 - Prob. 32.2QQCh. 32 - Prob. 32.3QQCh. 32 - Prob. 32.4QQCh. 32 - (i) At an instant of time during the oscillations...Ch. 32 - Prob. 32.1OQCh. 32 - Prob. 32.2OQCh. 32 - Prob. 32.3OQCh. 32 - In Figure OQ32.4, the switch is left in position a...Ch. 32 - Prob. 32.5OQ
Ch. 32 - Prob. 32.6OQCh. 32 - Prob. 32.7OQCh. 32 - Prob. 32.1CQCh. 32 - Prob. 32.2CQCh. 32 - A switch controls the current in a circuit that...Ch. 32 - Prob. 32.4CQCh. 32 - Prob. 32.5CQCh. 32 - Prob. 32.6CQCh. 32 - The open switch in Figure CQ32.7 is thrown closed...Ch. 32 - After the switch is dosed in the LC circuit shown...Ch. 32 - Prob. 32.9CQCh. 32 - Discuss the similarities between the energy stored...Ch. 32 - Prob. 32.1PCh. 32 - Prob. 32.2PCh. 32 - Prob. 32.3PCh. 32 - Prob. 32.4PCh. 32 - An emf of 24.0 mV Ls induced in a 500-turn coil...Ch. 32 - Prob. 32.6PCh. 32 - Prob. 32.7PCh. 32 - Prob. 32.8PCh. 32 - Prob. 32.9PCh. 32 - Prob. 32.10PCh. 32 - Prob. 32.11PCh. 32 - A toroid has a major radius R and a minor radius r...Ch. 32 - Prob. 32.13PCh. 32 - Prob. 32.14PCh. 32 - Prob. 32.15PCh. 32 - Prob. 32.16PCh. 32 - Prob. 32.17PCh. 32 - Prob. 32.18PCh. 32 - Prob. 32.19PCh. 32 - When the switch in Figure P32.18 is closed, the...Ch. 32 - Prob. 32.21PCh. 32 - Show that i = Iiet/ is a solution of the...Ch. 32 - Prob. 32.23PCh. 32 - Consider the circuit in Figure P32.18, taking =...Ch. 32 - Prob. 32.25PCh. 32 - The switch in Figure P31.15 is open for t 0 and...Ch. 32 - Prob. 32.27PCh. 32 - Prob. 32.28PCh. 32 - Prob. 32.29PCh. 32 - Two ideal inductors, L1 and L2, have zero internal...Ch. 32 - Prob. 32.31PCh. 32 - Prob. 32.32PCh. 32 - Prob. 32.33PCh. 32 - Prob. 32.34PCh. 32 - Prob. 32.35PCh. 32 - Complete the calculation in Example 31.3 by...Ch. 32 - Prob. 32.37PCh. 32 - A flat coil of wire has an inductance of 40.0 mH...Ch. 32 - Prob. 32.39PCh. 32 - Prob. 32.40PCh. 32 - Prob. 32.41PCh. 32 - Prob. 32.42PCh. 32 - Prob. 32.43PCh. 32 - Prob. 32.44PCh. 32 - Prob. 32.45PCh. 32 - Prob. 32.46PCh. 32 - In the circuit of Figure P31.29, the battery emf...Ch. 32 - A 1.05-H inductor is connected in series with a...Ch. 32 - A 1.00-F capacitor is charged by a 40.0-V power...Ch. 32 - Calculate the inductance of an LC circuit that...Ch. 32 - An LC circuit consists of a 20.0-mH inductor and a...Ch. 32 - Prob. 32.52PCh. 32 - Prob. 32.53PCh. 32 - Prob. 32.54PCh. 32 - An LC circuit like the one in Figure CQ32.8...Ch. 32 - Show that Equation 32.28 in the text Ls Kirchhoffs...Ch. 32 - In Figure 31.15, let R = 7.60 , L = 2.20 mH, and C...Ch. 32 - Consider an LC circuit in which L = 500 mH and C=...Ch. 32 - Electrical oscillations are initiated in a series...Ch. 32 - Review. Consider a capacitor with vacuum between...Ch. 32 - Prob. 32.61APCh. 32 - An inductor having inductance I. and a capacitor...Ch. 32 - A capacitor in a series LC circuit has an initial...Ch. 32 - Prob. 32.64APCh. 32 - When the current in the portion of the circuit...Ch. 32 - At the moment t = 0, a 24.0-V battery is connected...Ch. 32 - Prob. 32.67APCh. 32 - Prob. 32.68APCh. 32 - Prob. 32.69APCh. 32 - At t = 0, the open switch in Figure P31.46 is...Ch. 32 - Prob. 32.71APCh. 32 - Prob. 32.72APCh. 32 - Review. A novel method of storing energy has been...Ch. 32 - Prob. 32.74APCh. 32 - Review. The use of superconductors has been...Ch. 32 - Review. A fundamental property of a type 1...Ch. 32 - Prob. 32.77APCh. 32 - In earlier times when many households received...Ch. 32 - Assume the magnitude of the magnetic field outside...Ch. 32 - Prob. 32.80CPCh. 32 - To prevent damage from arcing in an electric...Ch. 32 - One application of an RL circuit is the generation...Ch. 32 - Prob. 32.83CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In the circuit of Figure P27.25, the switch S has been open for a long time. It is then suddenly closed. Determine the time constant (a) before the switch is closed and (b) after the switch is closed. (c) Let the switch be closed at t = 0. Determine the current in the switch as a function of time. Figure P27.25 Problems 25 and 26.arrow_forwardIn Figure 33.9A (page 1052), the switch is closed at a at t = 0. Find an expression for the power dissipated by the resistor as a function of time, and sketch your result. Is the power lost greater as soon as the switch is closed or a long time after it has been closed? Does your answer make sense?arrow_forwardComplete the calculation in Example 31.3 by proving that 0e2Rt/Ldt=L2Rarrow_forward
- Each of the three situations in Figure P32.68 shows a resistor in a circuit in which currents are induced. Using Lenzs law, determine whether the current in each situation is from a to b or from b to a. a. If the current I in the wire in Figure P32.68A is increased from zero to I, what is the direction of the current induced across the resistor R? b. The switch in Figure P32.68B is initially closed and is thrown open at t = 0. What is the direction of the current induced across the resistor R immediately afterward? c. A bar magnet is brought close to the circuit shown in Figure P32.68C. What is the direction of the current induced across the resistor R?arrow_forwardR1 S R3. R2 4. Determine in the current in each resistor given that R1 = R2 = R3 = 1N, the capacitance C = 0.5 µF, and potential across the batter of E = 2V when the switch is closed at t = 0. Determine then after some time (t = 0) after the switch is closed the currents in each resistor.arrow_forwardYou connect a battery, resistor, and capacitor as in (Figure 1), where R = 14.0 Ω and C = 3.00 ×10^-6 F. The switch S is closed at t = 0. When the current in the circuit has magnitude 3.00 A, the charge on the capacitor is 40.0 × 10^−6 C. At what time t after the switch is closed is the charge on the capacitor equal to 40.0 x 10^-6 C? When the current has magnitude 3.00 A, at what rate is energy being stored in the capacitor?arrow_forward
- 15V a. + AM 10.2. 4 t=0 um 45² 652 im + V 1 ic (t) b. Assume switch has been closed for Find a mathematical expression for Vc it capacitor is initially uncharged and the switch is closed at t = 0. Sketch Vc lt). 20m F a long time. opening Fird an expression for ic immediately after the switch and sketch it.arrow_forwardThe figure below shows a simplified model of a cardiac defibrillator, a device used to resuscitate patients in ventricular fibrillation. R C Riorso + When the switch S is toggled to the left, the capacitor C charges through the resistor R. When the switch is toggled to the right, the capacitor discharges current through the patient's torso, modeled as the resistor Rorso allowing the heart's normal rhythm to be reestablished. HINT (a) If the capacitor is initially uncharged with C = 8.25 µF and E = 1270 V, find the value of R (in ohms) required to charge the capacitor to a voltage of 795 V in 1.20 s. 3.904*10**-6 (b) If the capacitor is then discharged across the patient's torso with Rorso = 1240 0, calculate the voltage (in V) across the capacitor after 4.50 ms. 512.06 Varrow_forwardThe figure below shows a simplified model of a cardiac defibrillator, a device used to resuscitate patients in ventricular fibrillation. S R Rorso + When the switch S is toggled to the left, the capacitor C charges through the resistor R. When the switch is toggled to the right, the capacitor discharges current through the patient's torso, modeled as the resistor Rorso allowing the heart's normal rhythm to be reestablished. HINT The voltage across a charging capacitor is AV = E(1 - e-t/(RC)) and the voltage across a discharging capacitor is AV = AV maxe-t(RC) Click the hint button again to remove this hint. (a) If the capacitor is initially uncharged with C = 8.25 µF and Ɛ = 1270 V, find the value of R (in ohms) required to charge the capacitor to a voltage of 795 V in 1.20 s. (b) If the capacitor is then discharged across the patient's torso with Rorso = 1240 0, calculate the voltage (in V) across the capacitor after 4.50 ms. Varrow_forward
- The switch S, is closed for a long time in the circuit shown. Then, S, is opened and Sz is closed simultaneously. What is the maximum charge that can be stored in E the capacitor? ɛ = 30 V, L = 4 mH, R = 5 0, C = 6 µF LE R None of them 0.65 mC 0.35 mC 0.93 C 0.93 mC 0.65 C 0.35 Carrow_forwardChapter 30, Problem 054 In the figure, ε = 118 V, R₁ = 14.9 №, R₂ = 21.3 N, R3 = 35.8 №, and L= 1.90 H. Immediately after switch S is closed, what are (a) i₁ and (b) i₂? (Let currents in the indicated directions have positive values and currents in the opposite directions have negative values.) A long time later, what are (c) ₁ and (d) i2? The switch is then reopened. Just then, what are (e) ₁ and (f) i₂? A long time later, what are (g) ₁ and (h) i₂? www R₁ R$ R₂ Larrow_forwardFor the circuit shown in the figure, V = 60 V, C = 20 uF, and R = 0.10 MQ. Initially the switch S is open and the capacitor is uncharged. The switch is then closed at time t = 0.00 s. What is the charge on the capacitor 8.0 s after closing the switch? C Hint: Straightforward use of the charge vs. time expression. Standard units during the calculation! O 1600 uC O 1200 uc O 1400 uC O 1900 uC O 940 uCarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY