Concept explainers
A flat coil of wire has an inductance of 40.0 mH and a resistance of 5.00 Ω. It is connected to a 22.0-V battery at the instant t = 0. Consider the moment when the current is 3.00 A. (a) At what rate is energy bring delivered by the battery? (b) What is the power being delivered to the resistance of the coil? (c) At what rate is energy being stored in the magnetic field of the coil? (d) What is the relationship among these three power values? (e) Is the relationship described in part (d) true at other instants as well? (f) Explain the relationship at the moment immediately after t = 0 and at a moment several seconds later.
Trending nowThis is a popular solution!
Chapter 32 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- Design a current loop that, when rotated in a uniform magnetic field of strength 0.10 T, will produce an emf =0 sin t. where 0=110V and 0=110V .arrow_forwardA coil with a self-inductance of 3.0 H and a resistance of 100 2 carries a steady current of 2.0 A. (a) What is the energy stored in the magnetic field of the coil? (b) What is the energy per second dissipated in the resistance of the coil?arrow_forwardA 5000-pF capacitor is charged to 100 V and then quickly connected to an 80-mH inductor. Determine (a) the maximum energy stored in the magnetic field of the inductor, (b) the peak value of the current, and (c) the frequency of oscillation of the circuit.arrow_forward
- A toroidal coil has a mean radius of 16 cm and a cross-sectional area of 0.25 cm2; it is wound uniformly with 1000 turns. A second toroidal coil of 750 turns is wound uniformly over the first coil. Ignoring the variation of the magnetic field within a toroid, determine the mutual inductance of the two coils.arrow_forwardAt the instant a current of 0.20 A is flowing through a coil of wire, the energy stored in its magnetic field is 6.0 × 10-3 J. What is the self-inductance of the coil?arrow_forwardA coil with a self-inductance of 2.0 H carries a current that varies with time according to I(t) = (2.0 A)sin 120t . Find an expression for the emf induced in the coil.arrow_forward
- Show that Equation 32.28 in the text Ls Kirchhoffs loop rule as applied to the circuit in Figure P32.56 with the switch thrown to position b.arrow_forwardAn emf of 0.40 V is induced across a coil when the current through it changes uniformly from 0.10 to 0.60 A in 0.30 s. What is the self-inductance of the coil?arrow_forwardA 9.00 - V battery is connected to a coil which has a self-inductance of 125 mH and a resistance of 5.00 Ω. At what rate is energy being stored in the magnetic field of the coil when the current in the circuit is 0.500 Amps? Hint: Apply conservation of energy.arrow_forward
- After being closed for a long time, the switch S in the circuit shown in the figure below is thrown open at t = 0. In the circuit, = 24.0 V, RA = 4.50 kΩ, RB = 7.10 kΩ, and L = 513 mH. (a) What is the emf across the inductor immediately after the switch is opened? V(b) When does the current in the resistor RB have a magnitude of 1.00 mA? sarrow_forwardAn inductor used in a dc power supply has an inductance of 12.0 H and a resistance of 180 Ω. It carries a current of 0.500 A. (a) What is the energy stored in the magnetic field? (b) At what rate is thermal energy developed in the inductor? (c) Does your answer to part (b) mean that the magnetic-field energy is decreasing with time? Explain.arrow_forwardRA = 3.70 k, RB = 7.10 kN, and L = 627 mH. After being closed for a long time, the switch S in the circuit shown in the figure below is thrown open at t = 0. In the circuit, E = 24.0 V, RA RB ll b L a is opened? (a) What is the emf across the inductor immediately after the V (b) When does the current in the resistor RB have a magnitude of 1.00 mA?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning