Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 32, Problem 32.42P
To determine
The mutual inductance of the coils.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A conducting coil, with current i(t) = 5.40e-0.0250+ sin(120mt), withi in amperes and t in seconds, is placed next to a
second coil, end to end. At t = 0.720 s, a lab tech measures the emf across the second coil, and the result is -3.50 V. What
is the mutual inductance (in mH) of the coils?
mH
The current in a coil changes according to the formula: I = 0.5 − 0.2 t where t is in seconds and I is in amps. Experimental measurements show that an emf 0.5mV self-induced voltage is produced at the ends of the coil. What is self-inductance from the coil?
Two coils are placed close to each other. One of the coils has a current passing through it given by the function i(t) = 12.0 sin
(1.50 x 10³t). If the mutual inductance between the coils is 150 µH, what will be the peak emf in the coil?
Chapter 32 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 32 - A coil with zero resistance has its ends labeled a...Ch. 32 - Prob. 32.2QQCh. 32 - Prob. 32.3QQCh. 32 - Prob. 32.4QQCh. 32 - (i) At an instant of time during the oscillations...Ch. 32 - Prob. 32.1OQCh. 32 - Prob. 32.2OQCh. 32 - Prob. 32.3OQCh. 32 - In Figure OQ32.4, the switch is left in position a...Ch. 32 - Prob. 32.5OQ
Ch. 32 - Prob. 32.6OQCh. 32 - Prob. 32.7OQCh. 32 - Prob. 32.1CQCh. 32 - Prob. 32.2CQCh. 32 - A switch controls the current in a circuit that...Ch. 32 - Prob. 32.4CQCh. 32 - Prob. 32.5CQCh. 32 - Prob. 32.6CQCh. 32 - The open switch in Figure CQ32.7 is thrown closed...Ch. 32 - After the switch is dosed in the LC circuit shown...Ch. 32 - Prob. 32.9CQCh. 32 - Discuss the similarities between the energy stored...Ch. 32 - Prob. 32.1PCh. 32 - Prob. 32.2PCh. 32 - Prob. 32.3PCh. 32 - Prob. 32.4PCh. 32 - An emf of 24.0 mV Ls induced in a 500-turn coil...Ch. 32 - Prob. 32.6PCh. 32 - Prob. 32.7PCh. 32 - Prob. 32.8PCh. 32 - Prob. 32.9PCh. 32 - Prob. 32.10PCh. 32 - Prob. 32.11PCh. 32 - A toroid has a major radius R and a minor radius r...Ch. 32 - Prob. 32.13PCh. 32 - Prob. 32.14PCh. 32 - Prob. 32.15PCh. 32 - Prob. 32.16PCh. 32 - Prob. 32.17PCh. 32 - Prob. 32.18PCh. 32 - Prob. 32.19PCh. 32 - When the switch in Figure P32.18 is closed, the...Ch. 32 - Prob. 32.21PCh. 32 - Show that i = Iiet/ is a solution of the...Ch. 32 - Prob. 32.23PCh. 32 - Consider the circuit in Figure P32.18, taking =...Ch. 32 - Prob. 32.25PCh. 32 - The switch in Figure P31.15 is open for t 0 and...Ch. 32 - Prob. 32.27PCh. 32 - Prob. 32.28PCh. 32 - Prob. 32.29PCh. 32 - Two ideal inductors, L1 and L2, have zero internal...Ch. 32 - Prob. 32.31PCh. 32 - Prob. 32.32PCh. 32 - Prob. 32.33PCh. 32 - Prob. 32.34PCh. 32 - Prob. 32.35PCh. 32 - Complete the calculation in Example 31.3 by...Ch. 32 - Prob. 32.37PCh. 32 - A flat coil of wire has an inductance of 40.0 mH...Ch. 32 - Prob. 32.39PCh. 32 - Prob. 32.40PCh. 32 - Prob. 32.41PCh. 32 - Prob. 32.42PCh. 32 - Prob. 32.43PCh. 32 - Prob. 32.44PCh. 32 - Prob. 32.45PCh. 32 - Prob. 32.46PCh. 32 - In the circuit of Figure P31.29, the battery emf...Ch. 32 - A 1.05-H inductor is connected in series with a...Ch. 32 - A 1.00-F capacitor is charged by a 40.0-V power...Ch. 32 - Calculate the inductance of an LC circuit that...Ch. 32 - An LC circuit consists of a 20.0-mH inductor and a...Ch. 32 - Prob. 32.52PCh. 32 - Prob. 32.53PCh. 32 - Prob. 32.54PCh. 32 - An LC circuit like the one in Figure CQ32.8...Ch. 32 - Show that Equation 32.28 in the text Ls Kirchhoffs...Ch. 32 - In Figure 31.15, let R = 7.60 , L = 2.20 mH, and C...Ch. 32 - Consider an LC circuit in which L = 500 mH and C=...Ch. 32 - Electrical oscillations are initiated in a series...Ch. 32 - Review. Consider a capacitor with vacuum between...Ch. 32 - Prob. 32.61APCh. 32 - An inductor having inductance I. and a capacitor...Ch. 32 - A capacitor in a series LC circuit has an initial...Ch. 32 - Prob. 32.64APCh. 32 - When the current in the portion of the circuit...Ch. 32 - At the moment t = 0, a 24.0-V battery is connected...Ch. 32 - Prob. 32.67APCh. 32 - Prob. 32.68APCh. 32 - Prob. 32.69APCh. 32 - At t = 0, the open switch in Figure P31.46 is...Ch. 32 - Prob. 32.71APCh. 32 - Prob. 32.72APCh. 32 - Review. A novel method of storing energy has been...Ch. 32 - Prob. 32.74APCh. 32 - Review. The use of superconductors has been...Ch. 32 - Review. A fundamental property of a type 1...Ch. 32 - Prob. 32.77APCh. 32 - In earlier times when many households received...Ch. 32 - Assume the magnitude of the magnetic field outside...Ch. 32 - Prob. 32.80CPCh. 32 - To prevent damage from arcing in an electric...Ch. 32 - One application of an RL circuit is the generation...Ch. 32 - Prob. 32.83CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two coils are placed close together in a physics lab to demonstrate Faraday's law of induction. A current of 7.00 A in one is switched off in 1.30 ms, inducing a 3.00 V emf in the other. What is their mutual inductance (in mH)?arrow_forwardTwo coils, held in fixed positions, have a mutual inductance of 100 µH. What is the peak emf in one coil when the current in the other coil is i(t) = 10.0 sin (1.00 x 10³t), where i is in amperes and t is in seconds?arrow_forwardDuring a 74-ms interval, a change in the current in a primary coil occurs. This change leads to the appearance of a 6.6-mA current in a nearby secondary coil. The secondary coil is part of a circuit in which the resistance is 12 Q. The mutual inductance between the two coils is 3.2 mH. What is the change in the primary current? Alp=arrow_forward
- Two coils, held in fixed positions, have a mutual inductance of 225 uH. What is the peak emf in one coil when the current in the other coil is i(t) = 14.0 sin(1.10 x 103t), where i is in amperes and t is in seconds?arrow_forwardTwo coils have a mutual inductance of 2.34 x 10 4H. The current in the first coil increases at a uniform rate of 857A/s. If the resistance of the second coil is 62, what is the magnitude of the induced current (in mA) in the second coil? Answer:arrow_forward-0.0250t A conducting coil, with current i(t) = 4.00e second coil, end to end. At t = 0.880 s, a lab tech measures the emf across the second coil, and the result is -3.50 V. What sin(120at), with i in amperes and t in seconds, is placed next to a is the mutual inductance (in mH) of the coils? mHarrow_forward
- During a 58-ms interval, a change in the current in a primary coil occurs. This change leads to the appearance of a 5.5-mA current in a nearby secondary coil. The secondary coil is part of a circuit in which the resistance is 12 02. The mutual inductance between the two coils is 3.2 mH. What is the change in the primary current? Alp=arrow_forwardAn emf of 96.0 mV is induced in the windings of a coil when the current in a nearby coil is increasing at the rate of 1.20 A/s. What is the mutual inductance of the two coils?arrow_forwardTwo coils of wire are placed close together. Initially, a current of 3.80 A exists in one of the coils, but there is no current in the other. The current is then switched off in a time of 1.46 x 10-2 s. During this time, the average emf induced in the other coil is 2.86 V. What is the mutual inductance of the two-coil system? Świtch Primary Secondary Number 1.054 Units H the tolerance is +/-2%arrow_forward
- Two coils, 1 and 2, are separated in space, and have a fixed distance between them. When coil 2 has no current and the current in coil 1 increases at the rate of 24.0 A/s, the emf in coil 2 is 30.0 mV. What is their mutual inductance, M?arrow_forwardA current i(t) = (2A/s)t flows through a conducting coil which results in an emf of = -6V. What is the inductance of the coil (in H)? Answer:arrow_forwardAn emf of 0.70 V is induced across a coil when the current through it changes uniformly from 0.45 to 0.55 A in 0.40 s. What is the self-inductance of the coil (in H)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning