The switch in Figure P31.15 is open for t < 0 and is then thrown closed at time t = 0. Find (a) the current in the inductor and (b) the current in the switch as functions of time thereafter.
(a)
Answer to Problem 32.26P
Explanation of Solution
Given info: The value of resistance
Explanation:
Formula to calculate current in a loop as per Kirchhoff law is,
Here,
Write the expression for net voltage in loop 1,
Write the expression to calculate net voltage in loop 2,
Here,
Substitute
Substitute
Arrange the terms of above equation to simplify for integration.
On integrate,
Assume
Differentiate above equation,
Substitute
Substitute
Apply boundary condition,
Substitute
Substitute
Further solve the above expression.
Thus, the current in inductor in the terms of time is
Conclusion:
Therefore, the current in inductor in the terms of time is
(b)
Answer to Problem 32.26P
Explanation of Solution
Formula to calculate current in inductor, from equation (VII)
Formula to calculate current in switch, from equation, from equation (IV)
Substitute
Thus, current in switch is
Conclusion:
Therefore, the current in switch is
Want to see more full solutions like this?
Chapter 32 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- look at answer show all work step by steparrow_forwardLook at the answer and please show all work step by steparrow_forward3. As a woman, who's eyes are h = 1.5 m above the ground, looks down the road sees a tree with height H = 9.0 m. Below the tree is what appears to be a reflection of the tree. The observation of this apparent reflection gives the illusion of water on the roadway. This effect is commonly called a mirage. Use the results of questions 1 and 2 and the principle of ray reversibility to analyze the diagram below. Assume that light leaving the top of the tree bends toward the horizontal until it just grazes ground level. After that, the ray bends upward eventually reaching the woman's eyes. The woman interprets this incoming light as if it came from an image of the tree. Determine the size, H', of the image. (Answer 8.8 m) please show all work step by steparrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning