University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
bartleby

Videos

Textbook Question
Book Icon
Chapter 32, Problem 32.47P

CP Interplanetary space contains many small particles referred to as interplanetary dust. Radiation pressure from the sun sets a lower limit on the size of such dust particles. To see the origin of this limit, consider a spherical dust particle of radius R and mass density ρ. (a) Write an expression for the gravitational force exerted on this particle by the sun (mass M) when the particle is a distance r from the sun. (b) Let L represent the luminosity of the sun, equal to the rate at which it emits energy in electromagnetic radiation. Find the force exerted on the (totally absorbing) particle due to solar radiation pressure, remembering that the intensity of the sun's radiation also depends on the distance r. The relevant area is the cross-sectional area of the particle, not the total surface area of the particle. As part of your answer, explain why this is so. (c) The mass density of a typical interplanetary dust particle is about 3000 kg/m3. Find the particle radius R such that the gravitational and radiation forces acting on the particle are equal in magnitude. The luminosity of the sun is 3.9 × 1026 W. Does your answer depend on the distance of the particle from the sun? Why or why not? (d) Explain why dust particles with a radius less than that found in part (c) are unlikely to be found in the solar system. [Hint: Construct the ratio of the two force expressions found in parts (a) and (b).

Blurred answer
Students have asked these similar questions
Interplanetary space contains many small particles referred to as interplanetary dust. Radiation pressure from the sun sets a lower limit on the size of such dust particles. To see the origin of this limit, consider a spherical dust particle of radius R and mass density r. (a) Write an expression for the gravitational force exerted on this particle by the sun (mass M) when the particle is a distance r from the sun. (b) Let L represent the luminosity of the sun, equal to the rate at which it emits energy in electromagnetic radiation. Find the force exerted on the (totally absorbing) particle due to solar radiation pressure, remembering that the intensity of the sun’s radiation also depends on the distance r. The relevant area is the cross-sectional area of the particle, not the total surface area of the particle. As part of your answer, explain why this is so. (c) The mass density of a typical interplanetary dust particle is about 3000 kg/m3 . Find the particle radius R such that the…
A low-cost way of sending spacecraft to other planets would be to use the radiation-pressure on a solar sail. The intensity of the sun's electromagnetic radiation at distances near the earth's orbit is about 1,320 W/m². What size sail (in km²) would be needed to accelerate a 6,906 kg space craft toward Mars at 0.024 m/s²? Assume that the solar sail is perfectly reflecting. (Use c = 2.9979 × 108 m/s) km²
Consider regions of the EM spectrum. In order to study the structure of a crystalline solid, you want to illuminate it with EM radiation whose wavelength is the same as the spacing of the atoms in the crystal (0.190 nm). A) What is the frequency of the EM radiation in Hertz? B) In what part of the EM spectrum (radio, visible, etc.) does it lie?

Chapter 32 Solutions

University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)

Ch. 32 - Prob. 32.6DQCh. 32 - Prob. 32.7DQCh. 32 - Prob. 32.8DQCh. 32 - Prob. 32.9DQCh. 32 - Most automobiles have vertical antennas for...Ch. 32 - Prob. 32.11DQCh. 32 - Prob. 32.12DQCh. 32 - Does an electromagnetic standing wave have energy?...Ch. 32 - (a) How much time does it take light to travel...Ch. 32 - Consider each of the electric- and magnetic-field...Ch. 32 - Prob. 32.3ECh. 32 - Consider each of the following electric- and...Ch. 32 - BIO Medical X rays. Medical x rays are taken with...Ch. 32 - BIO Ultraviolet Radiation. There are two...Ch. 32 - Prob. 32.7ECh. 32 - Prob. 32.8ECh. 32 - Prob. 32.9ECh. 32 - Prob. 32.10ECh. 32 - Prob. 32.11ECh. 32 - Prob. 32.12ECh. 32 - Prob. 32.13ECh. 32 - An electromagnetic wave with frequency 65.0 Hz...Ch. 32 - Prob. 32.15ECh. 32 - BIO High-Energy Cancer Treatment. Scientists are...Ch. 32 - Prob. 32.17ECh. 32 - A sinusoidal electromagnetic wave from a radio...Ch. 32 - A space probe 2.0 1010 m from a star measures the...Ch. 32 - The energy flow to the earth from sunlight is...Ch. 32 - The intensity of a cylindrical laser beam is 0.800...Ch. 32 - A sinusoidal electromagnetic wave emitted by a...Ch. 32 - Prob. 32.23ECh. 32 - Television Broadcasting. Public television station...Ch. 32 - An intense light source radiates uniformly in all...Ch. 32 - In the 25-ft Space Simulator facility at NASAs Jet...Ch. 32 - BIO Laser Safety. If the eye receives an average...Ch. 32 - A laser beam has diameter 1.20 mm. What is the...Ch. 32 - Laboratory Lasers. He-Ne lasers are often used in...Ch. 32 - Prob. 32.30ECh. 32 - Microwave Oven. The microwaves in a certain...Ch. 32 - Prob. 32.32ECh. 32 - Prob. 32.33PCh. 32 - Prob. 32.34PCh. 32 - Prob. 32.35PCh. 32 - Prob. 32.36PCh. 32 - The sun emits energy in the form of...Ch. 32 - Prob. 32.38PCh. 32 - CP Two square reflectors, each 1.50 cm on a side...Ch. 32 - A source of sinusoidal electromagnetic waves...Ch. 32 - Prob. 32.41PCh. 32 - CP A circular wire loop has a radius of 7.50 cm. A...Ch. 32 - Prob. 32.43PCh. 32 - Prob. 32.44PCh. 32 - CP Global Positioning System (GPS). The GPS...Ch. 32 - Prob. 32.46PCh. 32 - CP Interplanetary space contains many small...Ch. 32 - Prob. 32.48PCh. 32 - DATA Because the speed of light in vacuum (or air)...Ch. 32 - DATA As a physics lab instructor, you conduct an...Ch. 32 - Prob. 32.51CPCh. 32 - Prob. 32.52CPCh. 32 - Prob. 32.53CPCh. 32 - BIO SAFE EXPOSURE TO ELECTROMAGNETIC WAVES. There...Ch. 32 - BIO SAFE EXPOSURE TO ELECTROMAGNETIC WAVES. There...Ch. 32 - Prob. 32.56PP

Additional Science Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
What Are Electromagnetic Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=ftyxZBxBexI;License: Standard YouTube License, CC-BY