University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 32, Problem 32.33P
(a)
To determine
The energy delivered to the retina with each pulse.
(b)
To determine
The average pressure of the laser beam exert at normal incidence on a surface in air.
(c)
To determine
The wavelength and frequency of the laser light inside the vitreous humor of the eye.
(d)
To determine
The maximum values of the electric and magnetic field in the laser beam.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The image attached is a neat copy of a photo of an electricity meter for a domestic solar array. The display shows the energy we sold to the electricity company on a winter's day. Each box is 100 W high and 1 hr wide. At the radius of the earth's orbit, the intensity of sunlight is I=1.4 kW.m–2 . (This means that 1.4 kW.m–2 passes through 1 square metre at right angles to the sun's rays.) The solar array in the previous question consists of 10 panels, each with area A=1.6 m2 . Under optimal conditions - with the sun at right angles to the array and no clouds in the sky - the array produces Pout=2.3 kW .
What is the efficiency of the array? Power out/power in = _____ %.
A0.5 MHz antenna carried by an airplane flying over the ocean surface generates a wave that approaches the water surface in the forme
a normally incident plane wave with an electric-field amplitude of 5500 V/m. Seawater is characterized by a dielectric constant of 72,
relative permeabity of 1 and conductivity of 4 Slm. The plane is trying to communicate a message to a submarine submerged at a depth d
below the water surface.
If the submarine's receiver requires a minimum signal ampitude of 0.03 u Vim), what is the maximum depth d to which successful
communication is still possible?
Answer
A high-energy pulsed laser emits a 1.1-ns-long pulse of average power
1.5×1011 W. The beam is nearly a cylinder 2.3x10-3 m in radius and it
travels in free space.
▼
Determine the energy delivered in each pulse.
Express your answer to two significant figures and include the appropriate units.
AU =
Submit
Part B
Erms =
Submit
Value
Provide Feedback
μA
Determine the rms value of the electric field.
Express your answer to two significant figures and include the appropriate units.
Request Answer
O
■
μA
Value
Units
Request Answer
?
Units
?
Chapter 32 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 32.1 - (a) Is it possible to have a purely electric wave...Ch. 32.2 - Prob. 32.2TYUCh. 32.3 - The first of Eqs. (32.17) gives the electric field...Ch. 32.4 - Figure 32.13 shows one wavelength of a sinusoidal...Ch. 32.5 - Prob. 32.5TYUCh. 32 - By measuring the electric and magnetic fields at a...Ch. 32 - When driving on the upper level of the Bay Bridge,...Ch. 32 - Give several examples of electromagnetic waves...Ch. 32 - Sometimes neon signs located near a powerful radio...Ch. 32 - Is polarization a property of all electromagnetic...
Ch. 32 - Prob. 32.6DQCh. 32 - Prob. 32.7DQCh. 32 - Prob. 32.8DQCh. 32 - Prob. 32.9DQCh. 32 - Most automobiles have vertical antennas for...Ch. 32 - Prob. 32.11DQCh. 32 - Prob. 32.12DQCh. 32 - Does an electromagnetic standing wave have energy?...Ch. 32 - (a) How much time does it take light to travel...Ch. 32 - Consider each of the electric- and magnetic-field...Ch. 32 - Prob. 32.3ECh. 32 - Consider each of the following electric- and...Ch. 32 - BIO Medical X rays. Medical x rays are taken with...Ch. 32 - BIO Ultraviolet Radiation. There are two...Ch. 32 - Prob. 32.7ECh. 32 - Prob. 32.8ECh. 32 - Prob. 32.9ECh. 32 - Prob. 32.10ECh. 32 - Prob. 32.11ECh. 32 - Prob. 32.12ECh. 32 - Prob. 32.13ECh. 32 - An electromagnetic wave with frequency 65.0 Hz...Ch. 32 - Prob. 32.15ECh. 32 - BIO High-Energy Cancer Treatment. Scientists are...Ch. 32 - Prob. 32.17ECh. 32 - A sinusoidal electromagnetic wave from a radio...Ch. 32 - A space probe 2.0 1010 m from a star measures the...Ch. 32 - The energy flow to the earth from sunlight is...Ch. 32 - The intensity of a cylindrical laser beam is 0.800...Ch. 32 - A sinusoidal electromagnetic wave emitted by a...Ch. 32 - Prob. 32.23ECh. 32 - Television Broadcasting. Public television station...Ch. 32 - An intense light source radiates uniformly in all...Ch. 32 - In the 25-ft Space Simulator facility at NASAs Jet...Ch. 32 - BIO Laser Safety. If the eye receives an average...Ch. 32 - A laser beam has diameter 1.20 mm. What is the...Ch. 32 - Laboratory Lasers. He-Ne lasers are often used in...Ch. 32 - Prob. 32.30ECh. 32 - Microwave Oven. The microwaves in a certain...Ch. 32 - Prob. 32.32ECh. 32 - Prob. 32.33PCh. 32 - Prob. 32.34PCh. 32 - Prob. 32.35PCh. 32 - Prob. 32.36PCh. 32 - The sun emits energy in the form of...Ch. 32 - Prob. 32.38PCh. 32 - CP Two square reflectors, each 1.50 cm on a side...Ch. 32 - A source of sinusoidal electromagnetic waves...Ch. 32 - Prob. 32.41PCh. 32 - CP A circular wire loop has a radius of 7.50 cm. A...Ch. 32 - Prob. 32.43PCh. 32 - Prob. 32.44PCh. 32 - CP Global Positioning System (GPS). The GPS...Ch. 32 - Prob. 32.46PCh. 32 - CP Interplanetary space contains many small...Ch. 32 - Prob. 32.48PCh. 32 - DATA Because the speed of light in vacuum (or air)...Ch. 32 - DATA As a physics lab instructor, you conduct an...Ch. 32 - Prob. 32.51CPCh. 32 - Prob. 32.52CPCh. 32 - Prob. 32.53CPCh. 32 - BIO SAFE EXPOSURE TO ELECTROMAGNETIC WAVES. There...Ch. 32 - BIO SAFE EXPOSURE TO ELECTROMAGNETIC WAVES. There...Ch. 32 - Prob. 32.56PP
Knowledge Booster
Similar questions
- A small helium-neon laser has a power output of 2.5 mW What is the electromagnetic energy in a 1.0-m length of the beam?arrow_forwardCASE STUDY In Example 34.6 (page 1111), we imagined equipping 1950DA, an asteroid on a collision course with the Earth, with a solar sail in hopes of ejecting it from the solar system. We found that the enormous size required for the solar sail makes the plan impossible at this time. Of course, there is no need to eject such an object from the solar system: we only need to change the orbit. A much more pressing problem is Apophis, a 300-m asteroid that may be on a collision course with the Earth and is due to come by on April 13, 2029. It is unlikely to hit the Earth on that pass, but it will return again in 2036. If Apophis passes through a 600-m keyhole on its 2029 pass, it is expected to hit the Earth in 2036. causing great damage. There are plans to deflect Apophis when it comes by in 2029. For example, we could hit it with a 10- to 150-kg impactor accelerated by a solar sail. The impactor is launched from the Earth to start orbiting the Sun in the same direction as the Earth and Apophis. The idea is to use a solar sail to accelerate the impactor so that it reverses direction and collides head-on with Apophis at 8090 km/s and thereby keeps Apophis out of the keyhole. Consider the momentum in the impactors orbit (Fig. P34.75) when the solar sail makes an angle of = 60 with the tangent to its orbit. Current solar sails may be about 40 m on a side, but the hope is to construct some that are about 160 m on a side. Estimate the impactors tangential acceleration when it is about 1 AU from the Sun. Keep in mind that the sail is neither a perfect absorber nor a perfect reflector, and a heavier impactor would presumably be equipped with a larger sail. Dont be surprised by what may seem like a very small acceleration. FIGURE P34.75arrow_forward(a) The ideal size (most efficient) for a broadcast antenna with one end on the ground is onefourth the wavelength (/4) of the electromagnetic radiation being sent out. If a new radio station has such an antenna that is 50.0 m high, what frequency does it broadcast most efficiently? Is this in the AM or FM band? (b) Discuss the analogy of the fundamental resonant mode of an air column closed at one end to the resonance of currents on an antenna that is one-fourth their wavelength.arrow_forward
- A high-energy pulsed laser emits a 1.0-ns-long pulse ofaverage power 1.5 x 1011 W .The beam is nearly a cylinder 2.2 x 10-3in radius. Determine (a) the energy delivered in each pulse, and (b) the rms value of the electric field.arrow_forwardTwo z-oriented dipole antennas are located at x=-2 and x=2, respectively. We know that I₁l = 1₂l. In the xz plane, what is the smallest angle where the far field is null? I₁l -^ Z 0 s 1₂1 λ Fig. Q10 Xarrow_forwardThe star Sirius is much hotter than the sun, with a peak wavelength of 290 nm compared to the sun’s 500 nm. It is also larger, with a diameter 1.7 times that of the sun. By what factor does the energy emitted by Sirius exceed that of the sun?arrow_forward
- If the radiant energy from the sun comes in as a plane EM wave of intensity 1340 W/m calculate the peak values of E and B. O 1000 V/m, 3.35x10-6 T O 111 V/m, 3. 00×10 5 T O 711 V/m, 2 37×10-6 T O 300 V/m. 10 T O 225 V/m, 1. 60' 10-3 T Next pagearrow_forwardA radio antenna 326 m in diameter receives a radio signal from a very distant object at perpendicular incidence. The radio signal is a continuous sine wave with an amplitude of Emax = 0.82x10-5 V/m. Assume that the antenna absorbs all the radiation that falls on the disk and calculate the power in Watts received by the antenna. Select one: a. 3.0e-8 b. 2.3e-8 c. 7.4e-4 d. 7.4e-9arrow_forwardThe intensity of solar radiation that falls on a detector on Earth is 1.00 kW/m². The detector is a square that measures 6.11 m on a side and the normal to its surface makes an angle of 30.0° with respect to the Sun's radiation. How long will it take for the detector to measure 436 kJ of energy? Sarrow_forward
- helparrow_forward6) THE POWER OF THE SUN AN TOTAL AT ALL em WAVELENGTHS THE DISTANCE BETWEEN SUN & EARTH IS r = 150,000,000 KM. IS 3.9 x 1026 W. (A) IF THE SUN IS DIRECTLY OVERHEAD, HOW MUCH POWER STRIKES A ROOF-TOP SOLAR CELL ARRAY CONSISTING OF 24 SOLAR PANELS, EACH MEASURING 1.5m x 2.5m? (8) IF EACH CELL IS 75% EFFICIENT AT CONVERTING THE SUN'S ENERGY TO ELECTRICITY, How MUCH POWER IS AVAILABLE ? (C) HOW DO THESE TWO ANSWERS CHANCE AT DEARBORN'S LATITUDE OF 42°arrow_forwardAn argon-ion laser produces a cylindrical beam of light whose average power is 0.642 W. How much energy is contained in a 2.16-m length of the beam? Number i Units Larrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College