Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 31, Problem 2P
To determine
The inductance of one conductor in the unstretched cord.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A coiled telephone cord forms a spiral with 60.0 turns, a diameter of 1.30 cm, and an unstretched length of 41.5 cm. Determine the inductance of one conductor in the unstretched cord in μH.
Question 2:
Part (a) Express the inductance of the solenoid, L, in terms of N, d, and A.
L = ______
Part (b) Calculate the numerical value of L in henries.
L = ______
Tarik winds a small paper tube uniformly with 173 turns of thin wire to form a solenoid. The tube's diameter is 7.95 mm and its
length is 2.07 cm. What is the inductance, in microhenrys, of Tarik's solenoid?
inductance:
µH
Chapter 31 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 31.1 - A coil with zero resistance has its ends labeled a...Ch. 31.2 - Prob. 31.2QQCh. 31.3 - Prob. 31.3QQCh. 31.4 - Prob. 31.4QQCh. 31.5 - (i) At an instant of time during the oscillations...Ch. 31 - Prob. 1PCh. 31 - Prob. 2PCh. 31 - Prob. 3PCh. 31 - Prob. 4PCh. 31 - Prob. 5P
Ch. 31 - A toroid has a major radius R and a minor radius r...Ch. 31 - Prob. 7PCh. 31 - Prob. 8PCh. 31 - Prob. 9PCh. 31 - Prob. 10PCh. 31 - Prob. 11PCh. 31 - Prob. 12PCh. 31 - Prob. 13PCh. 31 - You are working as a demonstration assistant for a...Ch. 31 - Prob. 15PCh. 31 - Prob. 16PCh. 31 - Prob. 17PCh. 31 - Prob. 18PCh. 31 - Prob. 19PCh. 31 - Prob. 20PCh. 31 - Prob. 21PCh. 31 - Prob. 22PCh. 31 - Prob. 23PCh. 31 - Prob. 24PCh. 31 - Prob. 25PCh. 31 - Prob. 26PCh. 31 - Prob. 27PCh. 31 - Prob. 28PCh. 31 - In the circuit of Figure P31.29, the battery emf...Ch. 31 - Prob. 30PCh. 31 - Prob. 31PCh. 31 - Prob. 32PCh. 31 - In Figure 31.15, let R = 7.60 , L = 2.20 mH, and C...Ch. 31 - Prob. 34PCh. 31 - Electrical oscillations are initiated in a series...Ch. 31 - Prob. 36APCh. 31 - A capacitor in a series LC circuit has an initial...Ch. 31 - Prob. 38APCh. 31 - Prob. 39APCh. 31 - At the moment t = 0, a 24.0-V battery is connected...Ch. 31 - Prob. 41APCh. 31 - Prob. 42APCh. 31 - Prob. 43APCh. 31 - Prob. 44APCh. 31 - Prob. 45APCh. 31 - At t = 0, the open switch in Figure P31.46 is...Ch. 31 - Prob. 47APCh. 31 - Prob. 48APCh. 31 - Prob. 49APCh. 31 - Prob. 50CPCh. 31 - Prob. 51CPCh. 31 - Prob. 52CPCh. 31 - Prob. 53CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the self-inductance per meter of a coaxial cable whose inner radius is 0.50 mm and whose outer radius is 4.00 mm?arrow_forwardA solenoid 50 cm long is wound with 500 turns of wire. The cross-sectional area of the coil is 2.0 cm2. What is the self-inductance of the solenoid?arrow_forwardA coil with a self-inductance of 2.0 H carries a current that varies with time according to I(t) = (2.0 A)sin 120t . Find an expression for the emf induced in the coil.arrow_forward
- A coil of 40 turns is wrapped around a long solenoid of cross-sectional area 7.5 × 10-3 m2. The solenoid is 0.50 m long and has 500 turns. (a) What is the mutual inductance of this system? (b) The outer coil is replaced by a coil of 40 turns whose radius is three times that of the solenoid. What is the mutual inductance of this configuration?arrow_forwardAn inductor has an inductance of 0.21 mH. Calculate the number of turns per unit length of this inductor if it has a total of 575 turns in it. The cross-sectional area of the solenoid is 2.00 cm2. Take ??μo (permeability of the free space) = 4*Pi*10-7 T.m/A Round off your answer to zero decimal place before submitting it . You are required to show your work in the file you submit.arrow_forwardAn RL circuit consists of a battery E = 24.0 volts, a resistor R = 4.5 ohms, and an inductor L = 12.0 H. Find the time it takes for the current in the circuit to reach 4.0 A. Find the voltage on the inductor at t = 5.0 seconds.arrow_forward
- A resistor and an inductor are wired in series with an ideal battery. The inductance of the inductor is 8.0 mH, and the resistance of the resistor is 2.0. Assume the battery is connected to the resistor and the inductor at t=0. How long does it take the current to reach half its final, steady value?arrow_forward4.30 2 3. L In the circuit the emf ɛ = 190 volts and the inductance L=34.6 mH. What will be the magnitude of the voltage difference across the inductor at a time 14.6 ms after the switch is closed? (State answer with 1 digit right of decimal. Do not enter unit.) llarrow_forwardA 521-turn solenoid has a radius of 7.00 mm and an overall length of 15.0 cm. a) What is its inductance? b) If the solenoid is connected in series with a 2.50-Ω resistor and a battery, what is the time constant of the circuit?arrow_forward
- A long straight, cylindrical, air-core solenoid has a diameter of 8.00 cm. It is 60.64 cm in length and has 2400 windings (turns). Calculate its self-inductance (in mH) to three significant figures.arrow_forwardAn air-filled cylindrical inductor has 2600 turns, and it is 2.4 cm in diameter and 34.5 cm long. What is its inductance? How many turns would you need to generate the same inductance if the core were iron-filled instead? Assume the magnetic permeability of iron is about 1200 times that of free space.arrow_forwardA rectangular conducting loop is placed on a flat surface, with the longer sides parallel to a current-carrying wire on the same surface, as shown in the figure. Assume h = 0.500 mm, w = 1.00 mm, and e = 3.00 mm. What is the mutual inductance (in pH) for this configuration? pHarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning