Concept explainers
The average induced emf in the circuit for the given time interval.
Answer to Problem 1P
The average induced emf for the given time interval is
Explanation of Solution
Given Info: The inductance of the given inductor is
Formula to calculate induced emf is,
Here,
Negative sign indicates the induced emf is opposite to the direction of current.
The expression for the rate of change of current is,
Substitute
Substitute
Conclusion:
Therefore, the induced emf in the inductor during the given time interval is
Want to see more full solutions like this?
Chapter 31 Solutions
Physics for Scientists and Engineers with Modern Physics
- A coil with a self-inductance of 3.0 H and a resistance of 100 2 carries a steady current of 2.0 A. (a) What is the energy stored in the magnetic field of the coil? (b) What is the energy per second dissipated in the resistance of the coil?arrow_forwardA coil with a self-inductance of 2.0 H carries a current that varies with time according to I(t) = (2.0 A)sin 120t . Find an expression for the emf induced in the coil.arrow_forwardA coil with a self-inductance of 3.0 H carries a current that decreases at a uniform rate dl/dt = -0.050 A/s. What is the emf induced in the coil? Describe the polarity of the induced emf.arrow_forward
- A 75-turn, 10.0 cm diameter coil rotates at an angular velocity of 8.00 radius in a 1.25 T field, starting with the plane of the coil parallel to the field. (a) What is the peak emf? (b) At what time is the peak emf first reached? (c) At what time is the emf first at its meet negative? (d) What is the period of the AC voltage output?arrow_forwardA 5000-pF capacitor is charged to 100 V and then quickly connected to an 80-mH inductor. Determine (a) the maximum energy stored in the magnetic field of the inductor, (b) the peak value of the current, and (c) the frequency of oscillation of the circuit.arrow_forwardThe current I(t) through a 5.0-mH inductor varies with time, as shown below. The resistance of the inductor is 5.0 . Calculate the voltage across the inductor at t = 2.0 ms, r = 4.0 ms, and t = 8.0 ms.arrow_forward
- A long, cylindrical solenoid with 100 turns per centimeter has a radius of 1.5 cm. (a) Neglecting end effects, that is the self-inductance per unit length of the solenoid? (b) If the current through the solenoid changes at the rate 5.0 AJs, what is the emf induced per unit length?arrow_forwardA 120-V, series-wound dc motor draws 0.50 A from its power source when operating at full speed, and it draws 2.0 A when it starts. The resistance of the armature coils is 10 , (a) What is the resistance of the field coils? (b) What is tire back emf of the motor when it is running at full speed? (c) The motor operates at a different speed and draws 1.0 A from the source. What is the back emf in this case?arrow_forwardA transformer is used to supply a 12-V model train with power from a 110-V wall plug. The train operates at 50 W of power, (a) What is the rms current in the secondary coil of the transformer? (b) What is me rms current in the primary coil? (c) What is the ratio of the number of primary to secondary turns? (d) What is the resistance of the tram? (e) What is the resistance seen by the 110-V source?arrow_forward
- Suppose that a rectangular toroid has 2000 windings and a self-inductance of 0.040 H. If h = 0.10 m, what is the current flowing through a rectangular toroid when the energy in its magnetic field is 2.0 × 10-6 J?arrow_forwarddI = -0.030 A/s. What is the emf induced in the coil (in V)? dt A coil with a self-inductance of 4.5 H carries a current that decreases at a uniform rate V Describe the polarity of the induced emf. This is the opposite polarity as the emf driving the current. This is the same polarity as the emf driving the current.arrow_forwardThe current in a 62 mH inductor changes with time as I = bt- at. With a = 6 A/s and b = the magnitude of the induced emf, E, at 6 A/s, find t = 0.7 s. Answer in units of V. At what time is the emf zero?arrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning