Concept explainers
MATHEMATICAL Predict the predominant forms of the amino acids from Question 8 at pH 10.
Interpretation:
The predominant forms of amino acids, histidine, asparagine, tryptophan, proline, and tyrosine, at pH 10 are to be predicted.
Concept introduction:
The name ‘amino acids’ itself implies that they have the amino group and carboxylic acid group. The central atom of the amino acid is called the alpha-carbon and that is why all the amino acids are called alpha-amino acids.
The naturally occurring amino acids are alpha-amino acids. The amino group attains the positive charge and the carboxyl group attains the negative charge at the neutral pH (potential of hydrogen).
Answer to Problem 9RE
Solution:
The imidazole ring of the histidine amino acid is deprotonated and the
The
The
The
The
Explanation of Solution
The imidazole ring in the side chain of the histidine amino acid remains partially protonated in the physiological condition, which classifies the amino acid as the positively charged amino acid and keeps this amino acid in the polar amino acid category.
The histidine loses the proton ions from the imidazole ring and the
The
When the pH increases and reaches to 10, the
The
Then, the amino group becomes neutral and the carboxyl group attains the negative charge. The negative charge of the carboxyl group contributes to the anionic behavior of the tryptophan amino acid at the pH 10.
The proline remains positively-charged at the acidic pH as the amino group is having the proton ion, and as the pH increases, the deprotonation occurs and the carboxyl group loses the proton ion and becomes negatively-charged.
The positive charge and the negative charge cancel out the effect of each other and thus, the whole amino acid becomes neutral in nature at the pH 10.
The tyrosine has the phenyl group in the side chain and hydroxyl group is also present at the phenyl group. The phenolic hydroxyl is 50% mixture of the protonated and deprotonated forms.
The
Therefore, it can be concluded that the histidine becomes anionic, asparagine becomes anionic, tryptophan becomes anionic, proline becomes neutral, and tyrosine becomes anionic at the pH 10.
(a)
Anion
(b)
Anion
(c)
Anion
(d)
Neutral
(e)
Anion
Explanation:
COOH COO- COO-
׀ ׀ ׀
H3N+ — C — H H3N+ — C — H H3N+ — C — H
׀ ׀ ׀
CH2 CH2 CH2
׀ ׀ ׀
At pH = 1 → At pH= 1.82 → At pH = 6
Charge = +2 Charge = +1 Charge = 0
↓
COO-
H3N— C — H
׀
CH2
׀
At pH = 10 ← At pH = 9.71
Charge = -1 Charge = -1
Anionic form
Hence, the predominant form of histidine at pH 10 is anionic.
___________________________________________________________________________
(b)
Given information: Asparagine at pH 10
Explanation:
COOH COO- COO-
׀ ׀ ׀
H3N+ — C — H H3N+ — C — H H2N — C — H
׀ | |
CH2 CH2 CH2
׀ ׀ ׀
C = O C = O C = O
׀ ׀ ׀
NH2 NH2 NH2
At pH = 1 → At pH= 2.02 → At pH = 8.80 → At pH = 10
Charge = +1 Charge = 0 Charge = -1 Charge = -1
Anionic
form
Hence, the predominant form of asparagine at pH 10 is anionic.
___________________________________________________________________________
(c)
Given information: Tryptophan at pH 10
Explanation:
COOH COO- COO-
׀ ׀ ׀
H3N+ — C — H H3N+ — C — H H2N — C — H
׀ ׀ ׀
CH2 CH2 CH2
׀ ׀ ׀
At pH = 1 → At pH= 2.38 → At pH = 9.39 → At pH = 10
Charge = +1 Charge = 0 Charge = -1 Charge = -1
(Anionic form)
Hence, the predominant form of tryptophan at pH 10 is anionic.
___________________________________________________________________________
(d)
Given information: Proline at pH 10.
Explanation:
At pH = 1 → At pH= 1.99 → At pH = 10
Charge = +1 Charge = 0 Charge = 0
Neutral form
Hence, the predominant form of proline at pH 10 is neutral.
___________________________________________________________________________
(e)
Given information: Tyrosine at pH 10.
Explanation:
COOH COO- COO-
׀ ׀ ׀
H3N+ — C — H H3N+ — C — H H2N — C — H
׀ ׀ ׀
CH2 CH2 CH2
׀ ׀ ׀
At pH = 1 → At pH= 2.20 → At pH = 9.11 → At pH = 10
Charge = +1 Charge = 0 Charge = -1 Charge = -1
(Anionic form)
Hence, the predominant form of tyrosine at pH 10 is anionic.
Want to see more full solutions like this?
Chapter 3 Solutions
BIOCHEMISTRY (LL)
- Calculate the number of ATP produced from oxidation of 1 molecule of glucosearrow_forwardExample 1: 1. Suppose an enzyme (MW = 5,000 g/mole) has a concentration of 0.05 mg/L. If the kcat is 1 x 10 s, what is the theoretical maximum reaction velocity for the enzyme? A) 1050 µM/s. B) 100 µM/s. C) 150 μM/s. D) 105 μM/s.arrow_forwardIn 1956, E. P. Kennedy and S. B. Weiss published their study of membrane lipid phosphatidylcholine (lecithin) synthesis in rat liver. Their hypothesis was that phosphocholine joined with some cellular component to yield lecithin. In an earlier experiment, incubating 32 P-labeled phosphocholine at physiological temperature (37 °C) with broken cells from rat liver yielded labeled lecithin. This became their assay for the enzymes involved in lecithin synthesis. Determine the optimal pH for this enzyme and characterize the enzyme activity at different pH values. -O-P-O-CH2-CH₁₂-N(CH3)3 Phosphocholine H₂C-O-C-R HC-O-C-R2 + + + Cell fraction + ? HC-O-P-O-CH₁₂-CH₂-N(CH), O Phosphatidylcholine The researchers then centrifuged the broken cell preparation to separate the membranes from the soluble proteins. They tested three preparations: whole extract, membranes, and soluble proteins. Table 1 summarizes the results. Table 1: Cell fraction requirement for incorporation of 32p-phosphocholine into…arrow_forward
- Researchers isolated an unknown substance, X, from rabbit muscle. They determined its structure from the following observations and experiments. (a) Qualitative analysis showed that X was composed entirely of C, H, and O. A weighed sample of X was completely oxidized and the H2O and CO2 produced were measured. This quantitative analysis revealed that X contained 40.00% C, 6.71% H, and 53.29% O by weight. (b) The molecular mass of X, as determined by mass spectrometry, was 90.00 atomic mass units (u). (c) Infrared spectroscopy showed that X contained one double bond. (d) X dissolved readily in water, and the solution demonstrated optical activity when tested in a polarimeter. (e) The aqueous solution of X is acidic. What is the empirical formula of X?arrow_forwardShow work. don't give Ai generated solution....give correct solutionarrow_forwardBiochemistry What is the process of "transamination" in either the muscles or the liver, that involves keto acid or glutamic acid? Please explain how the steps work. Thank you!arrow_forward
- Biochemistry Please help. Thank you What is the importance of glutamic acid in the metabolism of nitrogen from amino acids? (we know therole; it’s used to remove the nitrogen from amino acids so that the remaining carbon skeleton can bebroken down by the “usual” pathways, but what is the important, unique role that only glutamicacid/glutamate can do?)arrow_forwardBiochemistry Please help. Thank you When carbamyl phosphate is joined to L-ornathine, where does the energy for the reaction come from?arrow_forwardBiochemistry Question Please help. Thank you What is the function of glutamate dehydrogenase?arrow_forward
- Biochemistry Question Please help. Thank you How and why does a high protein diet affect the enzymes of the urea cycle?arrow_forwardBiochemistry What is the importance of the glucose-alanine cycle?arrow_forwardBiochemistry Assuming 2.5 molecules of ATP per oxidation of NADH/(H+) and 1.5molecules of ATP per oxidation of FADH2, how many ATP are produced per molecule of pyruvate? Please help. Thank youarrow_forward
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage Learning