Introduction to General, Organic and Biochemistry
12th Edition
ISBN: 9780357391594
Author: Frederick A. Bettelheim; William H. Brown; Mary K. Campbell
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 93P
3-109 Until several years ago, the two chlorofluorocarbons (CFCs) most widely used as heat transfer media in refrigeration systems were Freon-li (trichloro fluoromethane, CC13F) and Freon-12 (dichiorodi fluoromethane, CCl2F2). Draw a three-dimensional representation of each molecule and indicate the Direction of it.s polarity.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3. How many valence electrons are in a C atom?
an Cl atom?
(a) Write the full Lewis structure for the CH2C2 molecule. Show all lone pairs.
Pert
(b) Write the geometric structure for the CH2CI2 molecule and name the geometry.
(c) Determine if the CH2CI2 molecule has polar or nonpolar bonds using the
following electronegativity: C = 2.5, H = 2.1, CI = 3.0. Re-draw the geometric
structure below, but this time include partial charges and dipole arrows for any
polar bonds present. Justify your assignments for polar or nonpolar bonds.
10.) The structural formula of a certain aldehyde (related to formaldehyde) is H3C-CH2-CHO. Draw a Lewis structure for this aldehyde and determine the number of bonds present. Note that a single or a double or a triple bond counts as one bond.
Write the number, not the word.
Draw the molecules in Problem 1.61 using line structures
Chapter 3 Solutions
Introduction to General, Organic and Biochemistry
Ch. 3.1 - Problem 3-1 Show how the following chemical...Ch. 3.3 - Problem 3-2 Judging from their relative positions...Ch. 3.4 - Problem 3-3 Write the formulas for the ionic...Ch. 3.5 - Problem 3-4 Name these binary ionic compounds: (a)...Ch. 3.5 - Prob. 3.5QCCh. 3.5 - Problem 3-6 Give each binary compound a systematic...Ch. 3.5 - Problem 3-7 Name these ionic compounds, each of...Ch. 3.6 - Prob. 3.8QCCh. 3.6 - Prob. 3.9QCCh. 3.6 - Prob. 3.10QC
Ch. 3.6 - Prob. 3.11QCCh. 3.7 - Prob. 3.12QCCh. 3.8 - Prob. 3.13QCCh. 3.8 - Prob. 3.14QCCh. 3.9 - Problem 3-15 Predict all bond angles for these...Ch. 3.10 - Problem 3-16 Which of these molecules are polar?...Ch. 3 - 3-17 Answer true or false. (a) The octet rule...Ch. 3 - 3-18 How many electrons must each atom gain or...Ch. 3 - 3-19 Show how each chemical change obeys the octet...Ch. 3 - 3-20 Show how each chemical change obeys the octet...Ch. 3 - 3-21 Write the formula for the most stable ion...Ch. 3 - 3-22 Why is Li- not a stable ion?Ch. 3 - 3-23 Predict which ions are stable: (a) (b) (c)...Ch. 3 - 3-24 Predict which ions are stable: (a) Br2- (b)...Ch. 3 - 3-25 Why are carbon and silicon reluctant to form...Ch. 3 - 3-26 Table 3-2 shows the following ions of copper:...Ch. 3 - 3-27 Answer true or false. (a) For Group lA and...Ch. 3 - 3-28 Name each polyatomic ion. (a) HCO3- (b) NO2-...Ch. 3 - 3-29 Answer true or false. (a) According to the...Ch. 3 - Prob. 14PCh. 3 - 3-31 Why does electronegativity generally increase...Ch. 3 - 3-32 Judging from their relative positions in the...Ch. 3 - Prob. 17PCh. 3 - 3-34 Which of these bonds is the most polar? The...Ch. 3 - 3-35 Classify each bond as nonpolar covalent,...Ch. 3 - 3-36 Classify each bond as nonpolar covalent,...Ch. 3 - 3-37 Answer true or false. (a) An ionic bond is...Ch. 3 - 3-38 Complete the chart by writing formulas for...Ch. 3 - 3-39 Write a formula for the ionic compound formed...Ch. 3 - Prob. 24PCh. 3 - 3-41 Describe the structure of sodium chloride in...Ch. 3 - 3-42 What is the charge on each ion in these...Ch. 3 - 3-43 Write the formula for the compound formed...Ch. 3 - 3-44 Write the formula for the ionic compound...Ch. 3 - 3-45 Which formulas are not correct? For each that...Ch. 3 - 3-46 Which formulas are not correct? For each that...Ch. 3 - 3-47 Answer true or false. (a) The name of a...Ch. 3 - 3-48 Potassium chloride and potassium bicarbonate...Ch. 3 - Prob. 33PCh. 3 - 3-50 Name the polyatomic ion(s) in each compound....Ch. 3 - 3-51 Write the formulas for the ions present in...Ch. 3 - Prob. 36PCh. 3 - 3-53 Write formulas for the following ionic...Ch. 3 - 3-54 Write formulas for the following ionic...Ch. 3 - Prob. 39PCh. 3 - 3-56 How many covalent bonds are normally formed...Ch. 3 - 3-57 What is: (a) A single bond? (b) A double...Ch. 3 - 3-58 In Section 2-3B, we saw that there are seven...Ch. 3 - Prob. 43PCh. 3 - Prob. 44PCh. 3 - Prob. 45PCh. 3 - Prob. 46PCh. 3 - 3-63 What is the difference between (a) a bromine...Ch. 3 - 3-64 Acetylene (C2H2), hydrogen cyanide (HCN), and...Ch. 3 - Prob. 49PCh. 3 - 3-66 Why can’t second-row elements have more than...Ch. 3 - 3-67 Why does nitrogen have three bonds and one...Ch. 3 - 3-68 Draw a Lewis structure of a covalent compound...Ch. 3 - Prob. 53PCh. 3 - 3-70 Draw a Lewis structure of a covalent compound...Ch. 3 - Prob. 55PCh. 3 - Prob. 56PCh. 3 - Prob. 57PCh. 3 - 3-74 Answer true or false. (a) A binary covalent...Ch. 3 - Prob. 59PCh. 3 - Prob. 60PCh. 3 - 3-77 Ozone, O3, is an unstable blue gas with a...Ch. 3 - 3-78 Nitrous oxide, N20, laughing gas, is a...Ch. 3 - 3-79 Answer true or false. (a) The letters VSEPR...Ch. 3 - Prob. 64PCh. 3 - Prob. 65PCh. 3 - 3-82 Hydrogen and nitrogen combine in different...Ch. 3 - Prob. 67PCh. 3 - Prob. 68PCh. 3 - Prob. 69PCh. 3 - Prob. 70PCh. 3 - 3-87 Consider the molecule boron trffluoride, BF3....Ch. 3 - Prob. 72PCh. 3 - 3-89 Is it possible for a molecule to have no...Ch. 3 - Prob. 74PCh. 3 - Prob. 75PCh. 3 - Prob. 76PCh. 3 - Prob. 77PCh. 3 - Prob. 78PCh. 3 - Prob. 79PCh. 3 - Prob. 80PCh. 3 - Prob. 81PCh. 3 - Prob. 82PCh. 3 - 3-99 Knowing what you do about covalent bonding in...Ch. 3 - Prob. 84PCh. 3 - Prob. 85PCh. 3 - Prob. 86PCh. 3 - Prob. 87PCh. 3 - Prob. 88PCh. 3 - 3-105 Consider the structure of Vitamin E shown...Ch. 3 - 3-106 Consider the structure of Penicillin G shown...Ch. 3 - 3-107 Ephedrine, a molecule at one time found in...Ch. 3 - Prob. 92PCh. 3 - 3-109 Until several years ago, the two...Ch. 3 - 3-110 Name and write the formula for the fluorine...Ch. 3 - Prob. 95PCh. 3 - Prob. 96PCh. 3 - Prob. 97PCh. 3 - Prob. 98PCh. 3 - Prob. 99PCh. 3 - Prob. 100PCh. 3 - Prob. 101PCh. 3 - Prob. 102PCh. 3 - 3-119 Perchloroethylene, which is a liquid at room...Ch. 3 - 3-120 Vinyl chloride is the starting material for...Ch. 3 - 3-121 Tetrafluoroethylene is the starting material...Ch. 3 - 3-122 Some of the following structural formulas...Ch. 3 - 3-123 Sodium borohydride, NaBH4, has found wide...Ch. 3 - Prob. 108PCh. 3 - Prob. 109PCh. 3 - Prob. 110PCh. 3 - Prob. 111PCh. 3 - Prob. 112PCh. 3 - Consider the structure of Fluoxetine (or Prozac)...Ch. 3 - Consider the structure of lipoic acid shown below,...Ch. 3 - Prob. 115P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 3-107 Ephedrine, a molecule at one time found in the dietary supplement ephedra, has been linked to adverse health reactions, such as heart attacks, strokes, and heart palpitations. The use of ephedra in dietary supplements is now banned by the FDA. (a) Which is the most polar bond in ephedra? (b) Would you predict ephedra to be polar or nonpolar?arrow_forward3-119 Perchloroethylene, which is a liquid at room temperature, is one of the most widely used solvents for commercial dry cleaning. It is sold for this purpose under several trade names, including Perciene®. Does this molecule have polar bonds? Is it a polar molecule? Does it have a dipole?arrow_forward3-78 Nitrous oxide, N20, laughing gas, is a colorless, nontoxic, tasteless, and odorless gas. It is used as an inhalation anesthetic in dental and other surgeries. Because nitrous oxide is soluble in vegetable oils (fats), it is used commercially as a propellant in whipped toppings Nitrous oxide dissolves in fats. The gas is added under pressure to cans of whipped topping. When the valve is opened, the gas expands, thus expanding (whipping) the topping and forcing it out of the can. (a) How many valence electrons are present in a molecule of N20? (b) Write two equivalent contributing structures for this molecule. The connectivity in nitrous oxide is NNO. (c) Explain why the following is not an acceptable contributing structure:arrow_forward
- 3-120 Vinyl chloride is the starting material for the production of poly(vinyl chloride), abbreviated PVC. Its recycling code is “V”. The major use of PVC is for tubing in residential and commercial construction (Section 12-7). (a) Complete the Lewis structure for vinyl chloride by showing all unshared pairs of electrons. (b) Predict the HCH, HCC, and ClCH bond angles in this molecule. (c) Does vinyl chloride have polar bonds? Is it a polar molecule? Does it have a dipole?arrow_forward3-63 What is the difference between (a) a bromine atom, (b) a bromine molecule, and (c) a bromide ion? Draw the Lewis structure for each.arrow_forward3-87 Consider the molecule boron trffluoride, BF3. (a) Write a Lewis structure for BF3. (b) Predict the FBF bond angles using the VSEPR model. (c) Does BF3 have polar bonds? Is it a polar molecule?arrow_forward
- 3-122 Some of the following structural formulas are incorrect because they contain one or more atoms that do not have their normal number of covalent bonds. Which structural formulas are incorrect, and which atom or atoms in each have the incorrect number of bonds?arrow_forward3-123 Sodium borohydride, NaBH4, has found wide use as a reducing agent in organic chemistry. It is an ionic compound composed of one sodium ion, Na, and one borohydride ion, BH4. (a) How many valence electrons are present in the borohydride ion? (b) Draw a Lewis structure for the borohydride ion. (c) Predict the HBH bond angles in the borohydride ion.arrow_forward3-106 Consider the structure of Penicillin G shown below, an antibiotic used to treat bacterial infections caused by gram-positive organisms, derived from Penicillium fungi: (a) Identify the various types of geometries present in each central atom using VSEPR theory. (b) Determine the various relative bond angles associated with each central atom using VSEPR theory (c) Which is the most poiar bond in Penicillin G? (d) Would you predict Penicillin G to be polar or nonpolar?arrow_forward
- hat does temperature measure? Are the molecules in a beaker of warm water moving at the same speed as the molecules in a beaker of cold water? Explain? What is heat? Is heat the same as temperature?arrow_forward3-77 Ozone, O3, is an unstable blue gas with a characteristic pungent odor. In an ozone molecule, the connectivity of the atoms is OOO and both OO bonds are equivalent. (a) How many valence electrons must be present in an acceptable Lewis structure for an ozone molecule? (b) Write two equivalent resonance contributing structures for ozone. Be certain to show any positive or negative charges that may be present in your contributing structures. By equivalent contributing structures, we mean that each has the same pattern of bonding. (c) Show by the use of curved arrows how the first of your contributing structures may be converted to the second. (d) Based on your contributing structures, predict the OOO bond angle in ozone. (e) Explain why the following is not an acceptable contributing structure for an ozone molecule:arrow_forward2-97 Explain why the Ca3+ ion is not found in chemical compounds.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
General Chemistry 1A. Lecture 12. Two Theories of Bonding.; Author: UCI Open;https://www.youtube.com/watch?v=dLTlL9Z1bh0;License: CC-BY