(a)
Interpretation:
The total number of valence electrons in of
Concept Introduction:
The number of electrons present in outermost shell of an atom which are available for bonding are known as valence electrons. For a molecule, total number of valence electrons will be sum of valence electrons of each atom present in the molecule.

Answer to Problem 45P
8.
Explanation of Solution
Total number valence electrons in
The number of valence electrons in n are 5 and that in hydrogen is 1 thus.
Hence, total number valence electrons in
(b)
Interpretation:
Number of valence electrons in
Concept Introduction:
The number of electrons present in outermost shell of an atom which are available for bonding are known as valence electrons. For a molecule, total number of valence electrons will be sum of valence electrons of each atom present in the molecule.

Answer to Problem 45P
18.
Explanation of Solution
Total number valence electrons in
The number of valence electrons in C are 4 and that in hydrogen is 1 thus.
Hence, total number valence electrons in
(c)
Interpretation:
Number of valence electrons in
Concept Introduction:
The number of electrons present in outermost shell of an atom which are available for bonding are known as valence electrons. For a molecule, total number of valence electrons will be sum of valence electrons of each atom present in the molecule.

Answer to Problem 45P
24.
Explanation of Solution
Total number valence electrons in
The number of valence electrons in C are 4, in H is 1and in O are 6 thus.
Hence, total number valence electrons in
(d)
Interpretation:
Number of valence electrons in
Concept Introduction:
The number of electrons present in outermost shell of an atom which are available for bonding are known as valence electrons. For a molecule, total number of valence electrons will be sum of valence electrons of each atom present in the molecule.

Answer to Problem 45P
20.
Explanation of Solution
Total number valence electrons in
The number of valence electrons in C are 4, in H is 1and in O are 6 thus.
Hence, total number valence electrons in
(e)
Interpretation:
Number of valence electrons in
Concept Introduction:
The number of electrons present in outermost shell of an atom which are available for bonding are known as valence electrons. For a molecule, total number of valence electrons will be sum of valence electrons of each atom present in the molecule.

Answer to Problem 45P
32.
Explanation of Solution
Total number valence electrons in
The number of valence electrons in C are 4 and in Cl is 7 thus.
Hence, total number valence electrons in
(f)
Interpretation:
Number of valence electrons in
Concept Introduction:
The number of electrons present in outermost shell of an atom which are available for bonding are known as valence electrons. For a molecule, total number of valence electrons will be sum of valence electrons of each atom present in the molecule.

Answer to Problem 45P
18.
Explanation of Solution
Total number valence electrons in
The number of valence electrons in H is 1, in nitrogen is 5 and in O are 6 thus.
Hence, total number valence electrons in
(g)
Interpretation:
Number of valence electrons in
Concept Introduction:
The number of electrons present in outermost shell of an atom which are available for bonding are known as valence electrons. For a molecule, total number of valence electrons will be sum of valence electrons of each atom present in the molecule.

Answer to Problem 45P
32.
Explanation of Solution
Total number valence electrons in
The number of valence electrons in C is 4, in Cl is 7 and in F is also 7 thus.
Hence, total number valence electrons in
(h)
Interpretation:
Number of valence electrons in
Concept Introduction:
The number of electrons present in outermost shell of an atom which are available for bonding are known as valence electrons. For a molecule, total number of valence electrons will be sum of valence electrons of each atom present in the molecule.

Answer to Problem 45P
12.
Explanation of Solution
Total number valence electrons in
The number of valence electrons in O are 6, thus.
Hence, total number valence electrons in
Want to see more full solutions like this?
Chapter 3 Solutions
Introduction to General, Organic and Biochemistry
- help 20arrow_forwardProvide the drawing of the unknown structure that corresponds with this data.arrow_forward20.44 The Diels-Alder reaction is not limited to making six-membered rings with only car- bon atoms. Predict the products of the following reactions that produce rings with atoms other than carbon in them. OCCH OCCH H (b) CH C(CH₂)s COOCH མ་ནས་བ (c) N=C H -0.X- (e) H C=N COOCHS + CH2=CHCH₂ →→arrow_forward
- 3) Draw a detailed mechanism and predict the product of the reaction shown? 1) EtMgBr 2) H3O+arrow_forwardHow to draw the mechanism for this reaction?arrow_forward> H₂C=C-CH2-CH3 B. H₂O Pt C. + H2 + H₂O H D. 16. Give the IUPAC name for each of the following: B. Cl Cl c. Cl Cl 17. Draw the line-angle formula for each of the following compounds: 1. phenol 2. 1,3-dichlorobenzene 3. 4-ethyltoluene < Previous Submit Assignment Next ▸arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
