Concept explainers
A 5.08-cm-long rectangular glass chamber is inserted into one arm of a Michelson interferometer using a 633-nm light source. This chamber is initially filled with air
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
UNIVERSITY PHYSICS,VOL.3 (OER)
Additional Science Textbook Solutions
Biology: Life on Earth (11th Edition)
Introductory Chemistry (6th Edition)
Campbell Biology: Concepts & Connections (9th Edition)
Campbell Biology in Focus (2nd Edition)
Microbiology with Diseases by Body System (5th Edition)
College Physics: A Strategic Approach (3rd Edition)
- The movable mirror of a Michelson interferometer is attached to one end of a thin metal rod of length 23.3 mm. The other end of the rod is anchored so it does not move. As the temperature of the rod changes from 15°C to 25 C , a change of 14 fringes is observed. The light source is a He Ne laser, =632.8 nm . What is the change in length of the metal bar, and what is its thermal expansion coefficient?arrow_forwardA Fraunhofer diffraction pattern is produced on a screen located 1.00 m from a single slit. If a light source of wavelength 5.00 107 m is used and the distance from the center of the central bright fringe to the first dark fringe is 5.00 103 m, what is the slit width? (a) 0.010 0 mm (b) 0.100 mm (c) 0.200 mm (d) 1.00 mm (e) 0.005 00 mmarrow_forwardA monochromatic beam of light of wavelength 500 nm illuminates a double slit having a slit separation of 2.00 105 m. What is the angle of the second-order bright fringe? (a) 0.050 0 rad (b) 0.025 0 rad (c) 0.100 rad (d) 0.250 rad (e) 0.010 0 radarrow_forward
- In Figure P27.7 (not to scale), let L = 1.20 m and d = 0.120 mm and assume the slit system is illuminated with monochromatic 500-nm light. Calculate the phase difference between the two wave fronts arriving at P when (a) = 0.500 and (b) y = 5.00 mm. (c) What is the value of for which the phase difference is 0.333 rad? (d) What is the value of for which the path difference is /4?arrow_forwardShow that the distribution of intensity in a double-slit pattern is given by Equation 36.9. Begin by assuming that the total magnitude of the electric field at point P on the screen in Figure 36.4 is the superposition of two waves, with electric field magnitudes E1=E0sintE2=E0sin(t+) The phase angle in in E2 is due to the extra path length traveled by the lower beam in Figure 36.4. Recall from Equation 33.27 that the intensity of light is proportional to the square of the amplitude of the electric field. In addition, the apparent intensity of the pattern is the time-averaged intensity of the electromagnetic wave. You will need to evaluate the integral of the square of the sine function over one period. Refer to Figure 32.5 for an easy way to perform this evaluation. You will also need the trigonometric identity sinA+sinB=2sin(A+B2)cos(AB2)arrow_forwardProblem 2. A) A Michelson interferometer uses light of wavelength 500 nm. The irradiance of the beam exiting the laser is IL. What are the possible differences in the lengths of the arms of the interferometer when the irradiance at the detector is IL/3? B) Young's Double slit experiment is performed with HeNe laser wavelength 632.8 nm. The screen is 2 m from the slits and the slit separation is 0.2 mm. Find the distance of the 3th bright fringe from the center of the interference pattern on the screen (call the central bright fringe the "Oth" fringe).arrow_forward
- Problem 2. Suppose that a Michelson interferometer is illuminated by a source emitting a doublet of vacuum wavelengths, 21 and 22. As one mirror is moved, the fringes periodically disappear and then reappear. If a displacement Ad of the mirror causes a one-cycle variation in fringe visibility, derive an expression for Ad in terms of Aλ = 2-1. Then calculate Ad for the sodium doublet, where λ₁ = 588.995 nm and 2 = 589.592 nm.arrow_forwardThe Michelson interferometer can be used to measure the index of refraction of a gas by placing an evacuated transparent tube in the light path along one arm of the device. Fringe shifts occur as the gas is slowly added to the tube. Assume 610-nm light is used, the tube is 5.40 cm long, and 168 bright fringes pass on the screen as the pressure of the gas in the tube increases to atmospheric pressure. What is the index of refraction of the gas? Hint: The fringe shifts occur because the wavelength of the light changes inside the gas-filled tube. (Give your answer to at least five decimal places.)arrow_forwardThe Michelson interferometer can be used to measure the index of refraction of a gas by placing an evacuated transparent tube in the light path along one arm of the device. Fringe shifts occur as the gas is slowly added to the tube. Assume 580-nm light is used, the tube is 5.40 cm long, and 152 fringe shifts occur as the pressure of the gas in the tube increases to atmospheric pressure. What is the index of refraction of the gas? Hint: The fringe shifts occur because the wavelength of the light changes inside the gas-filled tube. (Give your answer to five decimal places.) 4.0arrow_forward
- One arm of a Michelson interferometer has a section of length 2.48 cm where the air can be evacuated. The dielectric constant of air is 1.00059. Find the number of fringes which will shift in the interference pattern of the interferometer when the air is evacuated for an interferometer illuminated with light of 663 nm wavelength. Round your answer to 0 decimal places. Add your answerarrow_forwardProblem 4: Consider light that has its third minimum at an angle of 21.2° when it falls on a single slit of width 3.95 µm. Randomized Variables 0 = 21.2° w = 3.95 μm Find the wavelength of the light in nanometers. 2 || = sin() cos() cotan() asin() atan() acotan() cosh() tanh() O Degrees tan() acos() sinh() cotanh() Radians π () 7 8 9 E ^^^ 4 5 6 3 1 2 0 + VO BACKSPACE * DEL HOME END CLEARarrow_forwardIn the laser range-finding experiments, the laser beam fired toward the moon spreads out as it travels because it diffracts through a circular exit as it leaves the laser. In order for the reflected light to be bright enough to detect, the laser spot on the moon must be no more than 1 km in diameter. Staying within this diameter is accomplished by using a special large-diameter laser.If λ = 532 nm, what is the minimum diameter of the circular opening from which the laser beam emerges? The earth-moon distance is 384,000 km.arrow_forward
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning