Concept explainers
Figure 3.14 shows two 7.50-cm-long glass slides illuminated by pure 589-nm
Figure 3.14 (a) The rainbow-color bands are produced by thin-film interference in the air between the two glass slides. (b) Schematic of the paths taken by rays in the wedge of air between the slides. (c) If the air wedge is illuminated with monochromatic light, bright and dark bands are obtained rather than repeating rainbow colors.
Trending nowThis is a popular solution!
Chapter 3 Solutions
UNIVERSITY PHYSICS,VOL.3 (OER)
Additional Science Textbook Solutions
Campbell Biology: Concepts & Connections (9th Edition)
Human Anatomy & Physiology (2nd Edition)
Applications and Investigations in Earth Science (9th Edition)
Campbell Essential Biology with Physiology (5th Edition)
Biology: Life on Earth (11th Edition)
College Physics: A Strategic Approach (3rd Edition)
- A Fraunhofer diffraction pattern is produced on a screen located 1.00 m from a single slit. If a light source of wavelength 5.00 107 m is used and the distance from the center of the central bright fringe to the first dark fringe is 5.00 103 m, what is the slit width? (a) 0.010 0 mm (b) 0.100 mm (c) 0.200 mm (d) 1.00 mm (e) 0.005 00 mmarrow_forwardIn Figure P36.10 (not to scale), let L = 1.20 m and d = 0.120 mm and assume the slit system is illuminated with monochromatic 500-nm light. Calculate the phase difference between the two wave fronts arriving at P when (a) = 0.500 and (b) y = 5.00 mm. (c) What is the value of for which the phase difference is 0.333 rad? (d) What is the value of for which the path difference is /4? Figure P36.10arrow_forwardA film of soapy water (n=1.33) on top of a plastic cutting board has a thickness of 233 nm. What color is most strongly reflected if it is illuminated perpendicular to its surface?arrow_forward
- Why is the following situation impossible? A piece of transparent material having an index of refraction n = 1.50 is cut into the shape of a wedge as shown in Figure P36.40. Both the top and bottom surfaces of the wedge are in contact with air. Monochromatic light of wavelength = 632.8 nm is normally incident from above, and the wedge is viewed from above. Let h = 1.00 mm represent the height of the wedge and = 0.500 m its length. A thin-film interference pattern appears in the wedge due to reflection from the top and bottom surfaces. You have been given the task of counting the number of bright fringes that appear in the entire length of the wedge. You find this task tedious, and your concentration is broken by a noisy distraction after accurately counting 5 000 bright fringes. Figure P36.40arrow_forwardAn air wedge is formed between two glass plates separated at one edge by a very line wire of circular cross section as shown in Figure P27.25. When the wedge is illuminated from above by 600-nm light and viewed from above, 30 dark fringes are observed. Calculate the diameter d of the wire.arrow_forwardThe figure shows two glass slides illuminated by monochromatic light incident perpendicularly. The top slide touches the bottom slide at one end and rests on a 0.105 mm diameter hair at the other end, forming a thin wedge of air. Rays 1 and 2 as well as rays 1' and 2' shown in the diagram are interfering destructively. How far apart, in millimeters, are the dark bands seen in the slides, if the slides are 8.5 cm long and 592 nm light is used?arrow_forward
- A thin layer of liquid methylene iodide (n = 1.756) is sandwiched between two flat, parallel plates of glass (n = 1.50). What must be the thickness of the liquid layer if normally incident light with = 394 nm in air is to be strongly reflectedarrow_forwardA thin film of glass (n = 1.66) of thickness 0.363 ?m is viewed under white light at near-normal incidence. What wavelength of visible light is most strongly reflected by the film when surrounded by air? (Visible light ranges from 400 to 700 nm.)arrow_forwardA broad beam of light of wavelength 600 nm is sent directly downward through the glass plate (n = 1.41). That plate and a plastic plate (n = 1.24) form a thin wedge of air that acts as a thin film. An observer looking down through the top plate sees the fringe pattern, with 7 dark fringes, having two centered on the ends. (a) What is the thickness (in m) of wedge at the right end? (b) How many dark fringes will the observer see if the air between the plates is replaced with a liquid with n = 1.35?arrow_forward
- A glass sheet 0.870 μm thick is suspended in air with white light incident perpendicularly on the sheet. In reflected light, there are gaps in the visible spectrum at 498.8 nm and 665.0 nm. Calculate the minimum value of the index of refraction ? of the glass sheet that would produce this effect.arrow_forwardTwo interfering light beams with I2= 122 l. The fringe contrast (Visibility) of the %3D resulting interference pattern is: 0.0602 1.8769 0.0904 0.4490 0.1796 Oarrow_forwardFigure 27.34 shows two glass slides illuminated by purewavelength light incident perpendicularly. The top slide touches the bottom slide at one end and rests on a 0.100-mm-diameter hair at the other end, forming a wedge of air. How far apart are the dark bands, if the slides are 7.50 cm long and 589-nm light is used?arrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax