Concept explainers
An effect analogous to two-slit interference can occur with sound waves, instead of light. In an open field, two speakers placed 1.30 m apart are powered by a single-function generator producing sine waves at 1200-Hz frequency. A student walks along a line 12.5 m away and parallel to the line between the speakers. She hears an alternating pattern of loud and quiet, due to constructive and destructive interference. What is (a) the wavelength of this sound and (b) the distance between the central maximum and the first maximum (loud) position along this line?
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
UNIVERSITY PHYSICS,VOL.3 (OER)
Additional Science Textbook Solutions
Biology: Life on Earth (11th Edition)
Microbiology: An Introduction
Introductory Chemistry (6th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Concepts of Genetics (12th Edition)
Campbell Biology (11th Edition)
- A riverside warehouse has several small doors facing the river. Two of these doors are open as shown in Figure P27.17. The walls of the warehouse are lined with sound-absorbing material. Two people stand at a distance L = 150 in from the wall with the open doors. Person A stands along a line passing through the midpoint between the open doors, and person B stands a distance y = 20 m to his side. A boat o the river sounds its horn. To person A, the sound is loud and clear. To person B, the sound is barely audible. The principal wavelength of the sound waves is 5.00 m. Assuming person B is at the position of the first minimum, determine the distance d between the doors, center to center.arrow_forwardFigure P36.35 shows a radio-wave transmitter and a receiver separated by a distance d = 50.0 m and both a distance h = 35.0 m above the ground. The receiver can receive signals both directly from the transmitter and indirectly from signals that reflect from the ground. Assume the ground is level between the transmitter and receiver and a 180 phase shift occurs upon reflection. Determine the longest wavelengths that interfere (a) constructively and (b) destructively. Figure P36.35 Problems 35 and 36.arrow_forwardTwo identical audio speakers connected to the same amplifier produce in-phase sound waves with a single frequency that can be varied between 340 and 575 HzHz . The speed of sound is 340 m/sm/s . You find that where you are standing, you hear minimum-intensity sound If one of the speakers is moved 39.8 cmcm toward you, the sound you hear has maximum intensity. What is the frequency of the sound? Express your answer in hertz. How much closer to you from the position in part B must the speaker be moved to the next position where you hear maximum intensity? Express your answer in meters.arrow_forward
- At a location that is 3.00 m from wave source A and 4.20 m from wave source B, constructive interference occurs. Source A and source B are coherent and in phase. What is the maximum wavelength of the waves?arrow_forward(a) A sheet of a certain type of glass is transparent but tinted red. To measure its light-absorbing properties, beams of monochromatic light from two different lasers are shined through the glass. One laser emits red light with a wavelength of 630 nm, while the other emits blue light with a wavelength of 460 nm. What is the frequency of the light emitted (in Hz) from each laser? red ? Hz blue ? Hz (b) The glass absorbs 73.0% of the energy of the blue light; that is, the intensity of the blue light just after exiting the glass is 27.0% of the intensity just before entering. (The sheet of glass is thin and the laser beam narrow, so the intensity change is not due to any widening of the beam.) Find the ratio of the amplitude of the blue light's electromagnetic wave before entering the glass to the amplitude after exiting the glass. Emax, f Emax, i = ?arrow_forwardLight of wavelength λ = 410 nm is incident upon two thin slits that are separated by a distance d = 25 μm. The light hits a screen L = 2.4 m from the screen. It is observed that at a point y = 4.8 mm from the central maximum the intensity of the light is I = 85 W/m2. Part (a) Write an equation for the phase shift between the light from the two slits at the observation point in terms of the given variables. Part (b) For the given data, what is the phase shift, in radians, between the light from the two slits at the observation point? Part (c) What is the intensity of the light at the two slits (I0) in watts per square meter?arrow_forward
- Sound exits a diffraction horn loudspeaker through a rectangular opening like a small doorway. Such a loudspeaker is mounted outside on a pole. In winter, when the temperature is 273 K, the diffraction angle θ has a value of 13o. What is the diffraction angle for the same sound on a summer day when the temperature is 311 K?arrow_forwardIn your summer job at an optics company, you are asked to measure the wavelength λ of the light that is produced by a laser. To do so, you pass the laser light through two narrow slits that are separated by a distance d. You observe the interference pattern on a screen that is 0.900 m from the slits and measure the separation ∆y between adjacent bright fringes in the portion of the pattern that is near the center of the screen. Using a microscope, you measure d. But both ∆y and d are small and difficult to measure accurately, so you repeat the measurements for several pairs of slits, each with a different value of d. Your results are shown in Fig. P35.50, where you have plotted ∆y versus 1/d. The line in the graph is the best-fit straight line for the data. (a) Explain why the data points plotted this way fall close to a straight line. (b) Use Fig. to calculate λ.arrow_forwardA viewing screen is separated from a double slit by 4.80 m. The distance between the two slits is 0.030 0 mm. Monochromatic light is directed toward the double slit and forms an interference pattern on the screen. The first dark fringe is 4.50 cm from the center line on the screen.(A) Determine the wavelength of the light.arrow_forward
- Suppose that the two waves in the figure have wavelength 451 nm in air. What multiple of A gives their phase difference when they emerge if (a) n₁1.68 and n₂-1.78, and L-7.67 um: (b) n₁-180 and n₂-1.90, and L-7.67 μm; and (c) ny-1.77 and n-1.97, and L- 3.39 pm My My (a) Number (b) Number (c) Number Units Units Unitsarrow_forwardA circular diaphragm 62.72 cm in diameter oscillates at a frequency of 15.97 kHz as an underwater source of sound used for submarine detection. Far from the source, the sound intensity is distributed as the diffraction pattern of a circular hole whose diameter equals that of the diaphragm. Take the speed of sound in water to be 1450. m/s, and find the angle (in degrees) between the normal to the diaphragm and a line from the diaphragm to the first minimum.arrow_forwardThe entrance to a large lecture room consists of two side-by-side doors, one hinged on the left, and the other hinged on the right. Each door is 0.790 m wide. Sound of frequency 870 Hz is coming through the entrance from within the room. Take the speed of sound to be 340 m/s. What is the diffraction angle of the sound after it passes through the doorway when one door is open.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning