Interpretation:
The type of semiconductor formed when antimony is doped with tin has to be determined.
Concept Introduction:
Semiconductors are the substances that have electrical conductivity between conductors and insulators such as materials of silicon and germanium.
p-type semiconductors are those that have positive charge of holes in large concentration than the electrons. In this, majority carriers are holes and minority carriers are electrons. It is formed by doping trivalent elements that have 3 valence electrons with group 14 elements.
n-type semiconductors are those that have electrons in large concentration than the holes. In this majority carriers are electrons and minority carriers are holes. It is formed by doping pentavalent elements that have 5 valence electrons with group 14 elements.
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
ACHIEVE/CHEMICAL PRINCIPLES ACCESS 1TERM
- 8.97 The doping of semiconductors can be done with enough precision to tune the size of the band gap in the material. Generally, in order to have a larger band gap, the dopant should be smaller than the main material. If you are a materials engineer and need a semiconductor that has lower conductivity thin pure silicon, what clement or elements could you use as your dopant? (You do not want either an n- or a p- type material) Explain your reasoning.arrow_forwardDescribe the structural units in (a) C (graphite) (b) SiC (c) FeCl2 (d) C2H2arrow_forwardWhat is the relationship between the structures of buckminsterfullerene and carbon nanotubes?arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning