
(a)
Interpretation:
The formula of copper (I) sulfite needs to be determined.
Concept Introduction:
When the number of electrons increases or decreases from the

Answer to Problem 3.82P
Explanation of Solution
The given name is copper (I) sulfite.
Here, copper is cation and sulfite is anion. The cation and anion with their charges are represented as follows:
The ratio of charge of cation to anion is as follows:
Therefore, the formula of the compound will be:
(b)
Interpretation:
The formula of aluminum nitrate needs to be determined.
Concept Introduction:
When the number of electrons increases or decreases from the atomic number, ions are formed. Cation is a positively charged ion formed by losing electron/s and anion is a negatively charged ion formed by gaining electron/s. While writing name of the ionic compounds, the name of cation is always written first followed by the name of the anion. In order to form an ionic compound, the cation and anion combine in such a way that the total charge is zero.

Answer to Problem 3.82P
Explanation of Solution
The given name is aluminum nitrate.
Here, aluminum is cation and nitrate is anion. The cation and anion with their charges are represented as follows:
The ratio of charge of cation to anion is as follows:
Therefore, the formula of the compound will be:
(c)
Interpretation:
The formula of tin (II) acetate needs to be determined.
Concept Introduction:
When the number of electrons increases or decreases from the atomic number, ions are formed. Cation is a positively charged ion formed by losing electron/s and anion is a negatively charged ion formed by gaining electron/s. While writing name of the ionic compounds, the name of cation is always written first followed by the name of the anion. In order to form an ionic compound, the cation and anion combine in such a way that the total charge is zero.

Answer to Problem 3.82P
Explanation of Solution
The given name is tin (II) acetate
Here, tin is cation and acetate is anion. The cation and anion with their charges are represented as follows:
The ratio of charge of cation to anion is as follows:
Therefore, the formula of the compound will be:
(d)
Interpretation:
The formula of lead (IV) carbonate needs to be determined.
Concept Introduction:
When the number of electrons increases or decreases from the atomic number, ions are formed. Cation is a positively charged ion formed by losing electron/s and anion is a negatively charged ion formed by gaining electron/s. While writing name of the ionic compounds, the name of cation is always written first followed by the name of the anion. In order to form an ionic compound, the cation and anion combine in such a way that the total charge is zero.

Answer to Problem 3.82P
Explanation of Solution
The given name is lead (IV) carbonate.
Here, lead is cation and carbonate is anion. The cation and anion with their charges are represented as follows:
The ratio of charge of cation to anion is as follows:
Therefore, the formula of the compound will be:
(e)
Interpretation:
The formula of zinc hydrogen phosphate needs to be determined.
Concept Introduction:
When the number of electrons increases or decreases from the atomic number, ions are formed. Cation is a positively charged ion formed by losing electron/s and anion is a negatively charged ion formed by gaining electron/s. While writing name of the ionic compounds, the name of cation is always written first followed by the name of the anion. In order to form an ionic compound, the cation and anion combine in such a way that the total charge is zero.

Answer to Problem 3.82P
Explanation of Solution
The given name is zinc hydrogen phosphate.
Here, zinc is cation and hydrogen phosphate is anion. The cation and anion with their charges are represented as follows:
The ratio of charge of cation to anion is as follows:
Therefore, the formula of the compound will be:
(f)
Interpretation:
The formula of manganese dihydrogen phosphate needs to be determined.
Concept Introduction:
When the number of electrons increases or decreases from the atomic number, ions are formed. Cation is a positively charged ion formed by losing electron/s and anion is a negatively charged ion formed by gaining electron/s. While writing name of the ionic compounds, the name of cation is always written first followed by the name of the anion. In order to form an ionic compound, the cation and anion combine in such a way that the total charge is zero.

Answer to Problem 3.82P
Explanation of Solution
The given name is manganese dihydrogen phosphate.
Here, manganese is cation and dihydrogen phosphate is anion. The cation and anion with their charges are represented as follows:
The ratio of charge of cation to anion is as follows:
Therefore, the formula of the compound will be:
(g)
Interpretation:
The formula of ammonium cyanide needs to be determined.
Concept Introduction:
When the number of electrons increases or decreases from the atomic number, ions are formed. Cation is a positively charged ion formed by losing electron/s and anion is a negatively charged ion formed by gaining electron/s. While writing name of the ionic compounds, the name of cation is always written first followed by the name of the anion. In order to form an ionic compound, the cation and anion combine in such a way that the total charge is zero.

Answer to Problem 3.82P
Explanation of Solution
The given name is ammonium cyanide.
Here, ammonium is cation and cyanide is anion. The cation and anion with their charges are represented as follows:
The ratio of charge of cation to anion is as follows:
Therefore, the formula of the compound will be:
(h)

Answer to Problem 3.82P
Explanation of Solution
The name of the compound is iron (II) nitrate.
Here, iron is cation and nitrate is anion. The cation and anion with their charges are represented as follows:
The ratio of charge of cation to anion is as follows:
Therefore, the formula of the compound will be:
Want to see more full solutions like this?
Chapter 3 Solutions
General, Organic, & Biological Chemistry
- 151.2 254.8 85.9 199.6 241.4 87.6 242.5 186.4 155.8 257.1 242.9 253.3 256.0 216.6 108.7 239.0 149.7 236.4 152.1 222.7 148.7 278.2 268.7 234.4 262.7 283.2 143.6 QUESTION: Using this group of data on salt reduced tomato sauce concentration readings answer the following questions: 1. 95% Cl Confidence Interval (mmol/L) 2. [Na+] (mg/100 mL) 3. 95% Na+ Confidence Interval (mg/100 mL)arrow_forwardResults Search Results Best Free Coursehero Unloc xb Success Confirmation of Q x O Google Pas alekscgi/x/lsl.exe/1o_u-IgNslkr 7j8P3jH-IQs_pBanHhvlTCeeBZbufu BYTI0Hz7m7D3ZcHYUt80XL-5alyVpwDXM TEZayFYCavJ17dZtpxbFD0Qggd1J O States of Matter Using a phase diagram to find a phase transition temperature or pressure Gabr 3/5 he pressure above a pure sample of solid Substance X at 101. °C is lowered. At what pressure will the sample sublime? Use the phase diagram of X below to nd your answer. pressure (atm) 24- 12 solid liquid gas 200 400 temperature (K) 600 ote: your answer must be within 0.15 atm of the exact answer to be graded correct. atm Thanation Check © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center I Q Search L³ ملةarrow_forward301.7 348.9 193.7 308.6 339.5 160.6 337.7 464.7 223.5 370.5 326.6 327.5 336.1 317.9 203.8 329.8 221.9 331.7 211.7 309.6 223.4 353.7 334.6 305.6 340.0 304.3 244.7 QUESTION: Using this group of data on regular tomato sauce concentration readings answer the following questions: 1. 95% Cl Confidence Interval (mmol/L) 2. [Na+] (mg/100 mL) 3. 95% Na+ Confidence Interval (mg/100 mL)arrow_forward
- Search Results Search Results Best Free Coursehero Unlo x b Success Confirmation of Q aleks.com/alekscgi/x/sl.exe/10_u-lgNslkr7j8P3jH-IQs_pBan HhvlTCeeBZbufu BYTIOHz7m7D3ZcHYUt80XL-5alyVpwDXM TEZayFYCav States of Matter Using a phase diagram to find a phase transition temperature or pressure Use the phase diagram of Substance X below to find the temperature at which X turns to a gas, if the pressure above the solid is 3.7 atm. pressure (atm) 0. 32- 16 solid liquid gas 200 temperature (K) Note: your answer must be within 20 °C of the exact answer to be graded correct. Дос Xarrow_forwardConsider the reaction below to answer the following questions: Acetoacetic ester can be prepared by the Claisen self-condensation reaction of ethyl acetate. 1. NaOEt, EtOH H&C OCH CH3 2 H30 H3C CH2 OCH2CH3 A. Write the complete stepwise mechanism for this reaction. Show all electron flow with arrows and draw all intermediate structures. B. Ethyl acetate can be prepared from ethanol as the only organic starting material. Show all reagents and structures for all intermediates in this preparation. C. Give the structures of the ester precursors for the following Claisen condensation product and formulate the reaction. OEtarrow_forwardUse the phase diagram of Substance X below to find the temperature at which X turns to a gas, if the pressure above the solid is 3.7 atm. pressure (atm) 32 16 solid liquid gas 0 0 200 temperature (K) Note: your answer must be within 20 °C of the exact answer to be graded correct. Шос ☑ كarrow_forward
- Starting from bromoethane, how could you prepare the following compounds: a. Ethanol. b. Acetaldehyde f. Acetone. e. 2-Propanol i. Acetoacetic ester. d. 2-Bromoacetic acid. c. Acetic acid g. Acetamide. j. Ethylmalonate k. Gama ketoacid. h. Ethyl magnesium bromide.arrow_forward- The pressure above a pure sample of solid Substance X at 60. °C is raised. At what pressure will the sample melt? Use the phase diagram of X below to find your answer. pressure (atm) 02 0.4 solid Hliquid gas 0 0 200 400 600 temperature (K) Note: your answer must be within 0.025 atm of the exact answer to be graded correct. ☐ atmarrow_forward15. What is the order of decreasing reactivity towards nucleophilic acyl substitution for the carboxylic acid derivatives? (most reactive first) 0 O H3C COC CH3 H₂C C N(CH3)2 H3C C OCH3 A. a. I, 11, 111, b. I, III, IV, II C. II, IV, III, I ° (CH3)2CH C OCH3 IV d. II, I, III, IV B. R COCR 0 0 0 13= RC NH2 RC OR RC CI === IV a. I, III, II, IV b. II, III, I, IV C. III, II, I, IV d. IV, I, III, IIarrow_forward
- Draw the formula of the product obtained by reacting D-Tallose with bromine water.arrow_forwardChoose the best reagent(s) for carrying out the following conversions from the list below. Place the letter corresponding to the best choice in the blank to the left of the conversion. a. KMnO4, H3O+ b. Tollens' Reagent [oxidizing reagent] C. NaBH4, ethanol d. 1. BH3 2. H3O+ e. 1. CH3MgBr, ether 2. H3O+ f. CrO3, H2SO4, H₂O g. 1. Mg, ether 2. CO2 3. H3O+ h. 1. NaCN 2. H2SO4, H2, heat i. O3, then Zn and HOAC j. CH₂I A. B. C. CH CH=CHCH2COOH Br CEN CH COOH + HOOCCH COOH COOH 010 CH3arrow_forwardDraw the structures for each of the intermediates in the boxes provided for the synthesis below. OCH3 Fe HO HNO (CHOO pynding H₂504 LHNO2 NACH-I Fa H₂O HCL HNO 180arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning




