(a)
Interpretation:
The velocity, the mass and identity of the given atoms should be calculated in the given statement by using the equation of kinetic energy
Concept Introduction:
Energy is the capacity to do work or transfer heat where work is the movement of a body using some force. The SI unit of energy is joule (
Where,
(a)

Answer to Problem 3.7QP
The velocity of
Explanation of Solution
To find: Determine the velocity of
Kinetic energy (in joule) is calculated using the formula:
Where,
By considering the given problem, the mass of
The mass of
Therefore, the velocity of
(b)
Interpretation:
The velocity, the mass and identity of the given atoms should be calculated in the given statement by using the equation of kinetic energy
Concept Introduction:
Energy is the capacity to do work or transfer heat where work is the movement of a body using some force. The SI unit of energy is joule (
Where,
(b)

Answer to Problem 3.7QP
The velocity of
Explanation of Solution
To find: Determine the velocity of
Kinetic energy (in joule) is calculated using the formula:
Where,
By considering the given problem, the mass of
The mass of
Therefore, the velocity of
(c)
Interpretation:
The velocity, the mass and identity of the given atoms should be calculated in the given statement by using the equation of kinetic energy
Concept Introduction:
Energy is the capacity to do work or transfer heat where work is the movement of a body using some force. The SI unit of energy is joule (
Where,
(c)

Answer to Problem 3.7QP
The mass and identity of an atom moving at
Explanation of Solution
To find: Determine the mass and identity of an atom moving at
Kinetic energy (in joule) is calculated using the formula:
Where,
By considering the given problem, the mass of a
The mass of an atom in kilograms is
If the mass in
By substituting the mass value in the above expression, the identity of the atom will be determined as follows:
The atom with a mass of
Want to see more full solutions like this?
Chapter 3 Solutions
CHEMISTRY: ATOMS FIRST VOL 1 W/CONNECT
- (c) (4pts) Mechanism: heat (E1) CH3OH + 1.5pts each _E1 _ (1pt) Br CH3OH (d) (4pts) Mechanism: SN1 (1pt) (e) (3pts) 1111 I H 10 Ill!! H LDA THF (solvent) Mechanism: E2 (1pt) NC (f) Bri!!!!! CH3 NaCN (3pts) acetone Mechanism: SN2 (1pt) (SN1) -OCH3 OCH3 1.5pts each 2pts for either product 1pt if incorrect stereochemistry H Br (g) “,、 (3pts) H CH3OH +21 Mechanism: SN2 (1pt) H CH3 2pts 1pt if incorrect stereochemistry H 2pts 1pt if incorrect stereochemistryarrow_forwardA mixture of butyl acrylate and 4'-chloropropiophenone has been taken for proton NMR analysis. Based on this proton NMR, determine the relative percentage of each compound in the mixturearrow_forwardQ5: Label each chiral carbon in the following molecules as R or S. Make sure the stereocenter to which each of your R/S assignments belong is perfectly clear to the grader. (8pts) R OCH 3 CI H S 2pts for each R/S HO R H !!! I OH CI HN CI R Harrow_forward
- Calculate the proton and carbon chemical shifts for this structurearrow_forwardA. B. b. Now consider the two bicyclic molecules A. and B. Note that A. is a dianion and B. is a neutral molecule. One of these molecules is a highly reactive compound first characterized in frozen noble gas matrices, that self-reacts rapidly at temperatures above liquid nitrogen temperature. The other compound was isolated at room temperature in the early 1960s, and is a stable ligand used in organometallic chemistry. Which molecule is the more stable molecule, and why?arrow_forwardWhere are the chiral centers in this molecule? Also is this compound meso yes or no?arrow_forward
- PLEASE HELP! URGENT!arrow_forwardWhere are the chiral centers in this molecule? Also is this compound meso yes or no?arrow_forwardA mixture of C7H12O2, C9H9OCl, biphenyl and acetone was put together in a gas chromatography tube. Please decide from the GC resutls which correspond to the peak for C7,C9 and biphenyl and explain the reasoning based on GC results. Eliminate unnecessary peaks from Gas Chromatography results.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





